首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rupture of atherosclerotic plaques is the underlying cause for the majority of acute strokes and myocardial infarctions. Rupture of the plaque occurs when the stress in the plaque exceeds the strength of the material locally. Biomechanical stress analyses are commonly based on pressurized geometries, in most cases measured by in-vivo MRI. The geometry is therefore not stress-free. The aim of this study is to identify the effect of neglecting the initial stress state on the plaque stress distribution. Fifty 2D histological sections (7 patients, 9 diseased coronary artery segments), perfusion fixed at 100 mmHg, were segmented and finite element models were created. The Backward Incremental method was applied to determine the initial stress state and the zero-pressure state. Peak plaque and cap stresses were compared with and without initial stress. The effect of initial stress on the peak stress was related to the minimum cap thickness, maximum necrotic core thickness, and necrotic core angle. When accounting for initial stress, the general relations between geometrical features and peak cap stress remain intact. However, on a patient-specific basis, accounting for initial stress has a different effect on the absolute cap stress for each plaque. Incorporating initial stress may therefore improve the accuracy of future stress based rupture risk analyses for atherosclerotic plaques.  相似文献   

2.
Knowledge of the biomechanical properties of human atherosclerotic plaques is of essential importance for developing more insights in the pathophysiology of the cardiovascular system and for better predicting the outcome of interventional treatments such as balloon angioplasty. Available data are mainly based on uniaxial tests, and most of the studies investigate the mechanical response of fibrous plaque caps only. However, stress distributions during, for example, balloon angioplasty are strongly influenced by all components of atherosclerotic lesions. A total number of 107 samples from nine human high-grade stenotic iliac arteries were tested; associated anamnesis of donors reported. Magnetic resonance imaging was employed to test the usability of the harvested arteries. Histological analyses has served to characterize the different tissue types. Prepared strips of 7 different tissue types underwent cyclic quasistatic uniaxial tension tests in axial and circumferential directions; ultimate tensile stresses and stretches were documented. Experimental data of individual samples indicated anisotropic and highly nonlinear tissue properties as well as considerable interspecimen differences. The calcification showed, however a linear property, with about the same stiffness as observed for the adventitia in high stress regions. The stress and stretch values at calcification fracture are smaller (179 +/- 56 kPa and 1.02 +/- 0.005) than for each of the other tissue components. Of all intimal tissues investigated, the lowest fracture stress occurred in the circumferential direction of the fibrous cap (254.8 +/- 79.8 kPa at stretch 1.182 +/- 0.1). The adventitia demonstrated the highest and the nondiseased media the lowest mechanical strength on average.  相似文献   

3.
Intimal cell death has been a recognized feature of advanced atherosclerotic disease. With the advent of DNA in situ end labelling and/or ultrastructural techniques, recent findings suggest that cells of an atheroma undergo programmed cell death or apoptosis. The pathophysiologic relevance of apoptosis in atherosclerotic disease is debatable. Apoptotic cell death may influence lesion progression and thus reduce overall plaque burden. Alternatively, apoptosis may prove a means of quenching the inflammation, converting cellular-rich lesions to so-called stable fibrous hypocellular plaques or conversely weaken the fibrous cap causing plaque rupture, a major cause of acute coronary syndromes. Apoptotic cells within plaques are typically macrophages, smooth muscle cells and T-cells and the frequency of death varies in the different regions of the lesion. The precise signalling pathways of apoptosis in plaques are unknown. There is however, some evidence that production of immune cytokines may promote apoptosis through activation of the Fas ligand-mediated death pathway. Genetic signals that regulate apoptosis in the atheroma, at least in smooth muscle cells, may involve the tumour suppressor genes p105 RB and p53. Further studies as to the relevance of apoptosis in acute coronary syndromes and potential mechanisms are emerging.  相似文献   

4.
The tearing of the cap of atheromatous plaques is the commonest cause of thrombosis in human coronary arteries. It has been proposed that tearing arises because of structural weakening of the cap's connective tissue around the tear. To test this hypothesis we compared the mechanical properties of the intact edges of torn plaque caps and unbroken caps. Owing to limitations in plaque size, a purpose-built tensometer was developed to study stress-strain relationships of the small connective tissue specimens. The design of the tensometer is reported and was shown to detect accurately, minor differences in connective tissues and to generate complete stress-curves with computer-assisted image analysis.  相似文献   

5.
Bacterial DNA has been found in coronary plaques and it has therefore been concluded that bacteria may play a role as trigger factors in the chronic inflammatory process underlying coronary atherosclerosis. However, the microbial spectrum is complex and it is not known whether microorganisms other than bacteria are involved in coronary disease. Fungal 18S rDNA signatures were systematically investigated in atherosclerotic tissue obtained through catheter-based atherectomy of 38 patients and controls (unaffected coronary arteries) using clone libraries, denaturating gradient gel analysis (DGGE), in situ hybridization and fluorescence in situ hybridization (FISH). Fungal DNA was found in 35 of 38 (92.11%) coronary heart disease patients by either polymerase chain reaction (PCR) with universal primers or in situ hybridization analysis (n = 5), but not in any control sample. In a clone library with more than 350 sequenced clones from pooled patient DNA, an overall richness of 19 different fungal phylotypes could be observed. Fungal profiles of coronary heart disease patients obtained by DGGE analysis showed a median richness of fungal species of 5 (range from 2 to 9) with a high interindividual variability (mean similarity 18.83%). For the first time, the presence of fungal components in atherosclerotic plaques has been demonstrated. Coronary atheromatous plaques harbour diverse and variable fungal communities suggesting a polymicrobial contribution to the chronic inflammatory aetiology.  相似文献   

6.
The evolution of atherosclerosis in general, and the influence of wall shear stress on the growth of atherosclerotic plaques in particular, is an intricate phenomenon which is still only partly understood. We therefore propose a qualitative mathematical model which consists of a number of ordinary differential equations for the concentrations of the most relevant constituents of the atherosclerotic plaque. These equations were studied both for the case that the wall shear stress is a parameter (model A), and for the case in which the plaque evolution is coupled to the blood flow (model B) which results in a time dependent wall shear stress. We find that both models exhibit a class of marginally stable equilibria, all reflecting states in which the plaque only grows for a short period of time after a perturbation. The uncoupled model A, however, shows bi-stability between this class of equilibria and another equilibrium state in which the plaque experiences unlimited growth in time, if the LDL cholesterol intake exceeds a threshold value. In model B the bi-stability vanishes, but we find that there is still a critical value of the LDL cholesterol intake beyond which the lumen radius drastically decreases. We show that this decrease is quite sensitive to the value of the wall shear stress.  相似文献   

7.
Somatic mutation theory of atherogenesis proved by alterations at the DNA level such as "loss of heterozygosity" and microsatellite instability in atherosclerotic plaque is complemented by the date of epigenetic variability of genetic loci involved in the pathological process. However, only recently large-scale analysis of epigenetic modifications in the human genome became possible. For the first time quantitative microarray-based methylation profiling of 1505 CpG-sites across 807 genes was performed in atherosclerotic aorta and carotid artery wall lesions using the GoldenGate Methylation Cancer Panel I ("Illumina", USA). One hundred and three (7%) CpG-sites in 90 (11%) genes were differentially methylated between tissue samples. The most pronounced differences in DNA methylation levels were registered for a site which is located in CpG-island of imprinted gene H19. By comparing 90 genes that were differentially methylated between tissue samples in our study, 10 genes (ICAM1, GSTM1, IGFBP1, POMC, APOA1, IL1RN, INS, LTA, MMP3, THBS2) were overlapped with data in Human Genome Epidemiology Network (HuGENet), in which they were identified as candidates for cardiovascular disease continuum.  相似文献   

8.
Detection of nanobacteria-like particles in human atherosclerotic plaques   总被引:8,自引:0,他引:8  
Recent and historical evidence is consistent with the view that atherosclerosis is an infectious disease or microbial toxicosis impacted by genetics and behavior. Because small bacterial-like particles, also known as nanobacteria have been detected in kidney stones, kidney and liver cyst fluids, and can form a calcium apatite coat we posited that this agent is present in calcified human atherosclerotic plaques. Carotid and aortic atherosclerotic plaques and blood samples collected at autopsy were examined for nanobacteria-like structures by light microscopy (hematoxylin-eosin and a calcium-specific von Kossa staining), immuno-gold labeling for transmission electron microscopy (TEM) for specific nanobacterial antigens, and propagation from homogenized, filtered specimens in culture medium. Nanobacterial antigens were identified in situ by immuno-TEM in 9 of 14 plaque specimens, but none of the normal carotid or aortic tissue (5 specimens). Nanobacteria-like particles were propagated from 26 of 42 sclerotic aorta and carotid samples and were confirmed by dot immunoblot, light microscopy and TEM. [3H]L-aspartic acid was incorporated into high molecular weight compounds of demineralized particles. PCR amplification of 16S rDNA sequences from the particles was unsuccessful by traditional protocols. Identification of nanobacteria-like particles at the lesion supports, but does not by itself prove the hypothesis that these agents contribute to the pathogenesis of atherosclerosis, especially vascular calcifications.  相似文献   

9.
Frizzled/planar cell polarity (Fz/PCP) signaling controls the orientation of sensory bristles and cellular hairs (trichomes) along the anteroposterior axis of the Drosophila thorax (notum). A subset of the trichome-producing notum cells differentiate as "tendon cells," serving as attachment sites for the indirect flight muscles (IFMs) to the exoskeleton. Through the analysis of chascon (chas), a gene identified by its ability to disrupt Fz/PCP signaling under overexpression conditions, and jitterbug (jbug)/filamin, we show that maintenance of anteroposterior planar polarization requires the notum epithelia to balance mechanical stress generated by the attachment of the IFMs. chas is expressed in notum tendon cells, and its loss of function disturbs cellular orientation at and near the regions where IFMs attach to the epidermis. This effect is independent of the Fz/PCP and fat/dachsous systems. The chas phenotype arises during normal shortening of the IFMs and is suppressed by genetic ablation of the IFMs. chas acts through jbug/filamin and cooperates with MyosinII to modulate the mechanoresponse of notum tendon cells. These observations support the notion that the ability of epithelia to respond to mechanical stress generated by one or more interactions with other tissues during development and organogenesis influences the maintenance of its shape and PCP features.  相似文献   

10.
Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 microm, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these ATR imaging approaches for cardiovascular medicine and biomedical applications.  相似文献   

11.
To clarify the clinical implications of neutrophils in vulnerable plaques we evaluated the function and activity of infiltrated neutrophils in an atherosclerotic plaque, focusing on oxidant production. A histopathological investigation was performed using carotid arterial samples obtained from seven patients. The atherosclerotic plaques were examined cytochemically for naphthol-ASD-chloroacetate esterase activity and oxidant-production, and immunohistochemically using N-formyl peptide receptor-like 1 (fPRL1)-, CD66b-, CD68- or p22phox-specific antibodies. The cytoplasmic fPRL1 intensity value of the neutrophils in the plaque was estimated using an activity index. Naphthol-ASD-chloroacetate esterase activity was found in cells located in the atherosclerotic plaque, indicating that the cells were neutrophils. The cytoplasmic fPRL1 intensity value of the neutrophils in the plaque decreased to approximately 60% of the intensity observed in the capillary vessels. Oxidant-production was also detected in the plaques, and both neutrophils and macrophages were observed at the corresponding oxidant-production sites. p22phox expression was also located in the same areas in which oxidant-production was observed in these plaques. We could not directly evaluate how much ROS generated from the infiltrated neutrophils contributed the plaque vulnerability followed by its rupture. However, the infiltrated neutrophils in the atherosclerotic plaques morphologically appeared activated and were actively generating oxidant, implying that neutrophils, together with macrophages, infiltrate into atherosclerotic plaques and contribute to plaque vulnerability.  相似文献   

12.
The catastrophic mechanical rupture of an atherosclerotic plaque is the underlying cause of the majority of cardiovascular events. The infestation of vascular calcification in the plaques creates a mechanically complex tissue composite. Local stress concentrations and plaque tissue strength properties are the governing parameters required to predict plaque ruptures. Advanced imaging techniques have permitted insight into fundamental mechanisms driving the initiating inflammatory-driven vascular calcification of the diseased intima at the (sub-) micron scale and up to the macroscale. Clinical studies have potentiated the biomechanical relevance of calcification through the derivation of links between local plaque rupture and specific macrocalcification geometrical features. The clinical implications of the data presented in this review indicate that the combination of imaging, experimental testing, and computational modelling efforts are crucial to predict the rupture risk for atherosclerotic plaques. Specialised experimental tests and modelling efforts have further enhanced the knowledge base for calcified plaque tissue mechanical properties. However, capturing the temporal instability and rupture causality in the plaque fibrous caps remains elusive. Is it necessary to move our experimental efforts down in scale towards the fundamental (sub-) micron scales in order to interpret the true mechanical behaviour of calcified plaque tissue interactions that is presented on a macroscale in the clinic and to further optimally assess calcified plaques in the context of biomechanical modelling.  相似文献   

13.
The formation of advanced glycation end-products(AGEs) is an important cause of metabolic memory in diabetic patients and a key factor in the formation of atherosclerosis(AS) plaques in patients with diabetes mellitus. Related studies showed that AGEs could disrupt hemodynamic steady-state and destroy vascular wall integrity through the endothelial barrier damage, foam cell(FC) formation, apoptosis, calcium deposition and other aspects. At the same time, AGEs could initiate oxidative stress and inflammatory response cascade via receptor-depended and non-receptor-dependent pathways, promoting plaques to develop from a steady state to a vulnerable state and eventually tend to rupture and thrombosis. Numerous studies have confirmed that these pathological processes mentioned above could lead to acute coronary heart disease(CHD) and other acute cardiovascular and cerebrovascular events. However, the specific role of AGEs in the progression and regression of AS plaques has not yet been fully elucidated. In this paper, the formation, source, metabolism, physical and chemical properties of AGEs and their role in the migration of FCs and plaque calcification are briefly described, we hope to provide new ideas for the researchers that struggling in this field.  相似文献   

14.
Background aims. After a myocardial infarction (MI) atherosclerosis is accelerated leading to destabilization of the atherosclerotic plaque. mesenchymal stromal cells are a promising therapeutic option for atherosclerosis. Previously, we demonstrated a novel stem cell delivery technique, with adipose stem cells coupled to microbubbles (i.e., StemBells) as therapy after MI. In this study, we aim to investigate the effect of StemBell therapy on atherosclerotic plaques in an atherosclerotic mouse model after MI. Methods. MI was induced in atherosclerotic Apolipoprotein E–deficient mice that were fed a high-fat Western diet. Six days post-MI, the mice received either 5?×?105/100 µL StemBells or vehicle intravenously. The effects of StemBell treatment on the size and stability of aortic root atherosclerotic plaques and the infarcted heart were determined 28 days post-MI via (immuno)histological analyses. Moreover, monocyte subtypes and lipids in the blood were studied. Results. StemBell treatment resulted in significantly increased cap thickness, decreased intra-plaque macrophage density and increased percentage of intra-plaque anti-inflammatory macrophages and chemokines, without affecting plaque size and serum cholesterol/triglycerides. Furthermore, StemBell treatment significantly increased the percentage of anti-inflammatory macrophages within the infarcted myocardium but did not affect cardiac function nor infarct size. Finally, also the average percentage of anti-inflammatory monocytes in the circulation was increased after StemBell therapy. Discussion. StemBell therapy increased cap thickness and decreased intra-plaque inflammation after MI, indicative of stabilized atherosclerotic plaque. It also induced a shift of circulating monocytes and intra-plaque and intra-cardiac macrophages towards anti-inflammatory phenotypes. Hence, StemBell therapy may be a therapeutic option to prevent atherosclerosis acceleration after MI.  相似文献   

15.
Despite advances in diagnosis and therapy, atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in the Western world. Predicting metabolically active atherosclerotic lesions has remained an unmet clinical need. We hereby developed an electrochemical strategy to characterize the inflammatory states of high-risk atherosclerotic plaques. Using the concentric bipolar microelectrodes, we sought to demonstrate distinct Electrochemical Impedance Spectroscopic (EIS) measurements for unstable atherosclerotic plaques that harbored active lipids and inflammatory cells. Using equivalent circuits to simulate vessel impedance at the electrode–endoluminal tissue interface, we demonstrated specific electric elements to model working and counter electrode interfaces as well as the tissue impedance. Using explants of human coronary, carotid, and femoral arteries at various Stary stages of atherosclerotic lesions (n = 15), we performed endoluminal EIS measurements (n = 147) and validated with histology and immunohistochemistry. We computed the vascular tissue resistance using the equivalent circuit model and normalized the resistance to the lesion-free regions. Tissue resistance was significantly elevated in the oxLDL-rich thin-cap atheromas (1.57 ± 0.40, n = 14, p < 0.001) and fatty streaks (1.36 ± 0.28, n = 33, p < 0.001) as compared with lesion-free region (1.00 ± 0.18, n = 82) or oxLDL-absent fibrous atheromas (0.86 ± 0.30, n = 12). Tissue resistance was also elevated in the calcified core of fibrous atheroma (2.37 ± 0.60, n = 6, p < 0.001). Despite presence of fibrous structures, tissue resistance between ox-LDL-absent fibroatheroma and the lesion-free regions was statistically insignificant (0.86 ± 0.30, n = 12, p > 0.05). Hence, we demonstrate that the application of EIS strategy was sensitive to detect fibrous cap oxLDL-rich lesions and specific to distinguish oxLDL-absent fibroatheroma.  相似文献   

16.
The localization of osteoglycin (OG), one of the corneal keratan sulfate proteoglycans, was studied in different normal rabbit tissues, as well as in atherosclerotic lesions, by means of in situ hybridization and immunohistochemistry. OG was associated with the vasculature of all the organs analyzed. Normal aortas showed abundance of the protein in the adventitia and focally in the media. Peripheral vessels showed OG localized only in the adventitia. OG mRNA was restricted to vascular smooth muscle cells, pericytes, and fibroblasts in aorta and skeletal muscle. In striated muscle, OG was abundant and distributed in foci around muscles and vessels, whereas in visceral muscle, the protein was homogeneously distributed throughout the extracellular matrix. In all the other organs studied, OG was only associated with the vasculature, with the exception of the lung and liver. In these two organs, the protein accumulated also around cartilage, alveoli, and hepatic duct. In atherosclerotic lesions, OG mRNA was down-regulated in the media and up-regulated in the activated endothelium and thick neo-intima, whereas the protein accumulated in the front edge of migrating smooth muscle cells. We conclude that OG is a basic component of the vascular extracellular matrix. OG also plays a role in atherosclerosis, and might be useful for therapeutic interventions. In addition, the possible involvement of OG in maintaining physical properties of tissues is discussed.  相似文献   

17.
It has recently been shown that extrahepatic cells can eliminate intracellular cholesterol by enzymatic conversion into 27-hydroxy-cholesterol and 3β-hydroxy-5-cholestenoic acid. Using immunohistochemical methods, we studied the presence of the enzyme responsible for these conversions, sterol 27-hydroxylase, in human carotid atherosclerotic plaques. All plaques examined were found to contain sterol 27-hydroxylase immuno-reactive cells. While some endothelial cells stained for sterol 27-hydroxylase, the majority of the immunoreactive cells co-localized with macrophages. Accumulation of sterol 27-hydroxylase-positive cells were often observed in macrophage-rich core regions of complicated lesions. High concentrations of 27-hydroxycholesterol were found in plaques, while the concentration in non-atherosclerotic human vessels was lower by two orders of magnitude. The rabbit, which is particularly sensitive to dietary cholesterol and easily develops fatty streaks, had low plasma levels of 27-hydroxycholesterol, 3 ng/ml compared to 150 ng/ml in humans. The concentration of 27-hydroxycholesterol in the atherosclerotic rabbit vessels was also lower compared to human atherosclerotic plaques. The results are consistent with our hypothesis that sterol 27-hydroxylase may be utilized by human macrophages as a defence towards a high cholesterol load. This mechanism may be less important in some other species.  相似文献   

18.
A study of the participation of the smooth muscle cells in the formation of atherosclerotic lesions was made on the autopsy material with the use of specific antiserum to the smooth muscle actomyosin and of indirect Coons' method. Typical forms of atherosclerotic lesions in the aorta, cerebral vessels and coronary arteries were studied. Smooth muscle cells were detected in the thickened intima alongside the atherosclerotic lesions, in fatty streaks, in the fibrous tissue of the atherosclerotic plaque, but they were not found in the atheromatous masses. The proliferation and migration of the smooth muscle cells is regarded as an essential factor in the pathogenetic mechanisms of atherosclersis.  相似文献   

19.
When monocytes isolated from human blood adhere to glass substratum, actin- and vinculin-containing punctate plaques rapidly appear at the ventral surface of the cells. We show here that highly purified human leukocyte interferon (IFN) can inhibit formation of these adhesion plaques in a dose-dependent manner. Complete inhibition was obtained when 300 IU/ml IFN were added into the cell-seeding medium. Plaques already formed in the absence of IFN were only partially affected by subsequent addition of IFN into the culture medium. Prevention by IFN of the formation of the adhesion plaques was associated with loosened attachment of the cells to the substratum. Effect of IFN on cellular morphology was complex. At higher doses, IFN added to the cultures within 24 h of seeding almost completely inhibited the differentiation of monocytes to macrophages and most of the cells remained rounded. At lower doses, however, an enhancement of the bipolar spreading was seen and the end result was a culture with predominantly elongated fibroblastoid cells. The latter cells, unlike the fibroblastoid cells in untreated monocyte-macrophage cultures, were completely devoid of the actin plaques, while the reorganization of vimentin-type intermediate filaments took place in a normal manner. These results further support the view that the actin- and vinculin-containing plaques have a role in mediating firm adherence of human monocytes to growth substratum.  相似文献   

20.
MicroRNAs are small noncoding single-stranded RNAs that regulate gene expression. Today, we see an increasing number of studies highlighting the important role of microRNAs in the development and progression of cardiovascular diseases caused by atherosclerotic lesions of arteries. We review the available scientific data on association of the expression of these biomolecules with instability of atherosclerotic plaques in animal models and humans. We made special emphasis on miR-21, -100, -127, -133, -143/145, -221/222, and -494 because they were analyzed in more than one study. We discuss the possibility of microRNAs using in the diagnosis and therapy of atherosclerosis and its complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号