首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell‐wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three‐dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required—later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.  相似文献   

2.
3.
4.
5.
6.
7.
Nine phosphatidylinositol‐specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin‐defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole‐3‐acetic acid (IAA) content, as well as the responses of a set of auxin‐related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1‐naphthaleneacetic acid or the auxin transport inhibitor N‐1‐naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin‐mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.  相似文献   

8.
9.
Deposition of ammonium (NH4+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4+ is well studied, little is known about how shoot‐supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin‐responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN‐FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1‐dependent auxin transport from shoot to root.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Elevated concentrations of soluble aluminium (Al) reduce root growth in acid soils, but much remains unknown regarding the toxicity of this Al as well as the mechanisms by which plants respond. This review examines changes in phytohormones in Al‐stressed plants. Al often results in a rapid ‘burst’ of ethylene in root apical tissues within 15–30 min, with this regulating an increase in auxin. This production of ethylene and auxin seems to be a component of a plant‐response to toxic Al, resulting in cell wall modification or regulation of organic acid release. There is also evidence of a role of auxin in the expression of Al toxicity itself, with Al decreasing basipetal transport of auxin, thereby potentially decreasing wall loosening as required for elongation. Increasingly, changes in abscisic acid in root apices also seem to be involved in plant‐responses to toxic Al. Changes in cytokinins, gibberellins and jasmonates following exposure to Al are also examined, although little information is available. Finally, although not a phytohormone, concentrations of nitric oxide change rapidly in Al‐exposed tissues. The information presented in this review will assist in focusing future research efforts in examining the importance of phytohormones in plant tissues exposed to toxic levels of Al.  相似文献   

17.
18.
19.
The link between root growth, H2O2, auxin signaling, and the cell cycle in cadmium (Cd)‐stressed rice (Oryza sativa L. cv. Zhonghua No. 11) was analyzed in this study. Exposure to Cd induced a significant accumulation of Cd, but caused a decrease in zinc (Zn) content which resulted from the decreased expression of OsHMA9 and OsZIP. Analysis using a Cd‐specific probe showed that Cd was mainly localized in the meristematic zone and vascular tissues. Formation and elongation of the root system were significantly promoted by 3‐amino‐1,2,4‐triazole (AT), but were markedly inhibited by N,N’‐dimethylthiourea (DMTU) under Cd stress. The effect of H2O2 on Cd‐stressed root growth was further confirmed by examining a gain‐of‐function rice mutant (carrying catalase1 and glutathione‐S‐transferase) in the presence or absence of diphenylene iodonium. DR5‐GUS staining revealed close associations between H2O2 and the concentration and distribution of auxin. H2O2 affected the expression of key genes, including OsYUCCA, OsPIN, OsARF, and OsIAA, in the auxin signaling pathway in Cd‐treated plants. These results suggest that H2O2 functions upstream of the auxin signaling pathway. Furthermore, H2O2 modified the expression of cell‐cycle genes in Cd‐treated roots. The effects of H2O2 on root system growth are therefore linked to auxin signal modification and to variations in the expression of cell‐cycle genes in Cd‐stressed rice. A working model for the effects of H2O2 on Cd‐stressed root system growth is thus proposed and discussed in this paper.  相似文献   

20.
In plants, the plasticity of root architecture in response to nitrogen availability largely determines nitrogen acquisition efficiency. One poorly understood root growth response to low nitrogen availability is an observed increase in the number and length of lateral roots (LRs). Here, we show that low nitrogen‐induced Arabidopsis LR growth depends on the function of the auxin biosynthesis gene TAR2 (tryptophan aminotransferase related 2). TAR2 was expressed in the pericycle and the vasculature of the mature root zone near the root tip, and was induced under low nitrogen conditions. In wild type plants, low nitrogen stimulated auxin accumulation in the non‐emerged LR primordia with more than three cell layers and LR emergence. Conversely, these low nitrogen‐mediated auxin accumulation and root growth responses were impaired in the tar2‐c null mutant. Overexpression of TAR2 increased LR numbers under both high and low nitrogen conditions. Our results suggested that TAR2 is required for reprogramming root architecture in response to low nitrogen conditions. This finding suggests a new strategy for improving nitrogen use efficiency through the engineering of TAR2 expression in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号