首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlamydomonas is an unicellular green alga that contains one cup-shaped chloroplast with about 60 copies of cpDNA. Chloroplasts (cp) multiply in the cytoplasm of the plant cell by binary division, with multiple copies of cpDNA transmitted and maintained in successive generations. The effect of cpDNA copy number on cell proliferation and aging was investigated using a C. reinhardtii moc mutant, which has an undispersed cp-nucleoid and unequal segregation of cpDNA during cell division. When the mother cell divided into four daughters, one moc daughter cell chloroplast contained about 60 copies of cpDNA, and the chloroplasts in the three other daughter cells contained the 4–7 copies of cpDNA. In liquid medium, the number of moc cells at the period of stationary phase was about one-third that of the wild type. To observe the process of proliferation and aging in the mother cell, we used solid medium. Three out of four moc cell spores were preferentially degenerated 60 days after cell transfer. To confirm this, wild-type and moc mother cells containing four daughter cells were treated with novobiocin to inhibit cpDNA replication. Cell degeneration increased only in the moc strain following novobiocin introduction. In total, our results suggest that cells possessing smaller amounts of cpDNA degenerate and age more rapidly. Received 7 September 2000/ Accepted in revised form 14 February 2001  相似文献   

2.
3.
All living cells must cope with protein aggregation, which occurs as a result of experiencing stress. In previously studied bacteria, aggregated protein is collected at the cell poles and is retained throughout consecutive cell divisions only in old pole‐inheriting daughter cells, resulting in aggregation‐free progeny within a few generations. In this study, we describe the in vivo kinetics of aggregate formation and elimination following heat and antibiotic stress in the asymmetrically dividing bacterium Caulobacter crescentus. Unexpectedly, in this bacterium, protein aggregates form as multiple distributed foci located throughout the cell volume. Time‐lapse microscopy revealed that under moderate stress, the majority of these protein aggregates are short‐lived and rapidly dissolved by the major chaperone DnaK and the disaggregase ClpB. Severe stress or genetic perturbation of the protein quality control machinery induces the formation of long‐lived aggregates. Importantly, the majority of persistent aggregates neither collect at the cell poles nor are they partitioned to only one daughter cell type. Instead, we show that aggregates are distributed to both daughter cells in the same ratio at each division, which is driven by the continuous elongation of the growing mother cell. Therefore, our study has revealed a new pattern of protein aggregate inheritance in bacteria.  相似文献   

4.
Yeasts in culture media grow exponentially in early period but eventually stop growing. The saturation of population growth is due to "density effect". The budding yeast, Saccharomyces cerevisiae, is known to exhibit a stage-dependent cell division. Daughter cell, which gives no birth, has longer generation time than mother, because daughter needs maturity time. So far, investigations have been restricted in exponential or non-crowding state; very little is known for the stage dependence of density effect. Here we present a lattice gas model to explore the population dynamics of crowding period. We compare theoretical results with experimental data, and find a stage-dependent density effect. Although small daughter cells can develop to a critical size, the reproduction of large daughter cells suddenly stops when the total density exceeds some critical level. Our results imply the existence of an inhibitor that specifically halts the reproduction of matured daughter cell.  相似文献   

5.
6.
Cell division in Gram‐negative bacteria involves the co‐ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin‐like protein FtsZ into a Z‐ring at mid‐cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z‐ring constriction, inner‐ and outer‐membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs‐Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid‐cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast‐growth conditions. State‐of‐the‐art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM‐depleted cells compared with wild‐type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.  相似文献   

7.
It is proposed to use amongst other characters the type of cell division in order to delimit theChlorosarcinales from theChlorococcales. A definition of the two processes of division occuring in these orders is given. It differs from that of other authors. In theChlorosarcinales only those genera should be assembled in which vegetative daughter cells arise by bipartition followed by firm association of the wall between the daughter cells with that of the mother cell. In contrast, autospores, the vegetative daughter cells of a number ofChlorococcales, develop by multiple division, their cell walls are formed all around the protoplasts and are free from that of the mother cell. The chlorococcalean generaTrebouxia andDictyochloropsis incorporate species which multiply by zoo-, aplano- and autospores as well as others having no autospores. Autospores possibly have arisen more than once during evolution.
  相似文献   

8.
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame‐to‐frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB‐based image processing package well‐suited to quantitative analysis of high‐throughput live‐cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine‐learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame‐to‐frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell‐cycle dynamics in bacteria as well as cell‐contact mediated phenomena. This package has a range of built‐in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.  相似文献   

9.
Daughter cells of the chlorococcal algaScenedesmus quadricauda incubated under photosynthesizing conditions in a phosphate-free medium accomplished one cell cycle but divided into a lower number of daughter cells compared to the control. RNA synthesis was restricted early in the cell cycle while protein synthesis was retarded as compared to the control only at the end of the cycle. The number of DNA replication rounds (and consequently the number of divisions) was reduced in proportion to the lower content of RNA per cell. Daughter cells produced by phosphorus-starved mother cells and grown further in a phosphorus free medium performed no net RNA, DNA and protein synthesis within the period corresponding to the duration of control cell cycle an o were unable to develop. They accumulated, however, about half the amount of starch found in normally developed mother cells. In a complete medium, the phosphorus-starved daughter cells resumed macromolecular syntheses with a lag of about 5 h. Thereafter, their development and reproductive processes were comparable to those in a healthy population. A similar course of recovery was obtained with starved daughter cells exposed to light in phosphorus-free medium for the period corresponding to one cell cycle. Thanks to the large amount of starch accumulated in these cells, they were able to run through an entire cell cycle in the dark after being supplied with phosphorus. The first response to phosphorus withdrawal from the nutrient medium was the restriction of RNA synthesis. This occurred in spite of the fact that phosphorus reserves in the cell were still abundant, which suggests an intimate link between the supply of exogenous phosphorus to the cell and RNA synthesis.  相似文献   

10.
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.  相似文献   

11.
Eukaryotic cells compartmentalize biochemical reactions into membrane‐enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER‐peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER‐bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p‐containing anchored peroxisomes and Inp1p‐deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers.  相似文献   

12.
The pattern of volume growth of Saccharomyces cerevisiae a/alpha was determined by image cytometry for daughter cells and consecutive cycles of parent cells. An image analysis program was specially developed to measure separately the volume of bud and mother cell parts and to quantify the number of bud scars on each parent cell. All volumetric data and cell attributes (budding state, number of scars) were stored in such a way that separate volume distributions of cells or cell parts with any combination of properties--for instance, buds present on mothers with two scars or cells without scars (i.e., daughter cells) and without buds--could be obtained. By a new method called intersection analysis, the average volumes of daughter and parent cells at birth and at division could be determined for a steady-state population. These volumes compared well with those directly measured from cells synchronized by centrifugal elutriation. During synchronous growth of daughter cells, the pattern of volume increase appeared to be largely exponential. However, after bud emergence, larger volumes than those predicted by a continuous exponential increase were obtained, which confirms the reported decrease in buoyant density. The cycle times calculated from the steady-state population by applying the age distribution equation deviated from those directly obtained from the synchronized culture, probably because of inadequate scoring of bud scars. Therefore, for the construction of a volume-time diagram, we used volume measurements obtained from the steady-state population and cycle times obtained from the synchronized population. The diagram shows that after bud emergence, mother cell parts continue to grow at a smaller rate, increasing about 10% in volume during the budding period. Second-generation daughter cells, ie., cells born from parents left with two scars, were significantly smaller than first-generation daughter cells. Second- and third-generation parent cells showed a decreased volume growth rate and a shorter budding period than that of daughter cells.  相似文献   

13.
Centrosomes comprise a pair of centrioles surrounded by an amorphous network of pericentriolar material (PCM). In certain stem cells, the two centrosomes differ in size, and this appears to be important for asymmetric cell division [1, 2]. In some cases, centrosome asymmetry is linked to centriole age because the older, mother centriole always organizes more PCM than the daughter centriole, thus ensuring that the mother centriole is always retained in the stem cell after cell division [3]. This has raised the possibility that an "immortal" mother centriole may help maintain stem cell fate [4, 5]. It is unclear, however, how centrosome size asymmetry is generated in stem cells. Here we provide compelling evidence that centrosome size asymmetry in Drosophila neuroblasts is generated by the differential regulation of Cnn incorporation into the PCM at mother and daughter centrioles. Shortly after centriole separation, mother and daughter centrioles organize similar amounts of PCM, but Cnn incorporation is then rapidly downregulated at the mother centriole, while it is maintained at the daughter centriole. This ensures that the daughter centriole maintains its PCM and so its position at the apical cortex. Thus, the?daughter centriole, rather than an "immortal" mother centriole, is ultimately retained in these stem cells.  相似文献   

14.
The cell division pattern in the apical meristem of Psilotum nudum was examined using epi-illumination microscopy and a paraffin method. In the subterranean axis, about half of the derivative cells of the apical cell produce tetrahedral daughter apical cells by the first three or more oblique divisions. Roughly half of these apical cells give rise to the apical meristems of axes, whereas the other half do not. Various relative activities of the mother and daughter apical cells give rise to disordered branching patterns. In the ill-organized apical meristem as well as the leafless and capless structure, the Psilotum subterranean axis differs from the basic organs of vascular plants such as stem and root and seems to be an independent organ. The cell division pattern characteristic of the subterranean axis persists in the young unbranched aerial shoots, although fewer daughter apical cells are produced. Dichotomous branching of the aerial shoots, as in a variety of organs of pteridophytes, involves loss of the mother apical cell followed by appearance of two daughter apical cells.  相似文献   

15.
Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new‐flagellum and the old‐flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new‐flagellum daughter in particular re‐modelling rapidly and extensively in early G1. This re‐modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old‐flagellum daughter undergoes a different G1 re‐modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non‐equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non‐equivalence.  相似文献   

16.
The detailed segregative cell division (SCD) processes and changes in the arrangement of cortical microtubules and actin filaments were examined in two species of Struvea. SCD was initiated by the appearance of annular constrictions along the lateral side of a mother cell. The constrictions decreased in diameter, became thin, tubular in shape, and pinched the protoplasm of the mother cell into several protoplasmic sections. The protoplasmic sections expanded and developed into daughter cells, which appressed each other, and were arranged in a single row. Lateral branches protruded from the upper parts of the daughter cells. The protoplasm of the lateral branches was divided by secondary SCDs and was distributed amongst the new daughter cells. SCD and lateral branch formation were essential for morphogenesis in Struvea. Cortical microtubules were arranged parallel and longitudinally to the cell axis before SCD. When SCD was initiated, there was considerable undulation of the cortical microtubules and several transverse bundles appeared in the cytoplasmic zone where annular constrictions occurred. A microtubule‐disrupting drug (amiprophos methyl) inhibited SCD. Actin filaments maintained reticulate patterns before and during SCD. These results demonstrated that SCD in Struvea species was quite distinct from that in Dictyosphaeria cavernosa reported previously.  相似文献   

17.
Yamamoto M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,226(4):917-927
Non-flagellated vegetative green algae of the Trebouxiophyceae propagate mainly by autosporulation. In this manner, the mother cell wall is shed following division of the protoplast in each round of cell division. Binary fission type Nannochloris and budding type Marvania are also included in the Trebouxiophyceae. Phylogenetic trees based on the actin sequences of Trebouxiophyceae members revealed that the binary fission type Nannochloris bacillaris and the budding type Marvania geminata are closely related in a distal monophyletic group. Our results suggest that autosporulation is the ancestral mode of cell division in Trebouxiophyceae. To elucidate how non-autosporulative mechanisms such as binary fission and budding evolved, we focused on the cleavage of the mother cell wall. Cell wall development was analyzed using a cell wall-specific fluorescent dye, Fluostain I. Exfoliation of the mother cell wall was not observed in either N. bacillaris or M. geminata. We then compared the two algae by transmission electron microscopy with rapid freeze fixation and freeze substitution; in both algae, the mother cell wall was cleaved at the site of cell division, but remained adhered to the daughter cell wall. In N. bacillaris, the cleaved mother cell wall gradually degenerated and was not observed in the next cell cycle. In contrast, M. geminata daughter cells entered the growth phase of the next cell cycle bearing the mother and grandmother cell walls, causing the uncovered portion of the plane of division to bulge outward. Such a delay in the degeneration and shedding of the mother cell wall probably led to the development of binary fission and budding.  相似文献   

18.
The ability of a yeast cell to propagate [PSI+], the prion form of the Sup35 protein, is dependent on the molecular chaperone Hsp104. Inhibition of Hsp104 function in yeast cells leads to a failure to generate new propagons, the molecular entities necessary for [PSI+] propagation in dividing cells and they get diluted out as cells multiply. Over‐expression of Hsp104 also leads to [PSI+] prion loss and this has been assumed to arise from the complete disaggregation of the Sup35 prion polymers. However, in conditions of Hsp104 over‐expression in [PSI+] cells we find no release of monomers from Sup35 polymers, no monomerization of aggregated Sup35 which is not accounted for by the proportion of prion‐free [psi] cells present, no change in the molecular weight of Sup35‐containing SDS‐resistant polymers and no significant decrease in average propagon numbers in the population as a whole. Furthermore, they show that over‐expression of Hsp104 does not interfere with the incorporation of newly synthesised Sup35 into polymers, nor with the multiplication of propagons following their depletion in numbers while growing in the presence of guanidine hydrochloride. Rather, they present evidence that over‐expression of Hsp104 causes malpartition of [PSI+] propagons between mother and daughter cells in a sub‐population of cells during cell division thereby generating prion‐free [psi?] cells.  相似文献   

19.
Description of a baby machine for Saccharomyces cerevisiae.   总被引:3,自引:0,他引:3  
A method for the continuous withdrawal of newly formed daughter cells from a growing population of Saccharomyces cerevisiae is described. An exponential-phase culture of cells was immobilized onto a surface and then flushed continuously with culture medium. Upon division of a cell in the immobilized population, the mother cell remained attached to the surface and the daughter cell was released. The method can be applied to research on the cell cycle, the segregation of components between cells, and cellular aging.  相似文献   

20.
The cell wall is a crucial structural feature in the vast majority of bacteria and comprises a covalently closed network of peptidoglycan (PG) strands. While PG synthesis is important for survival under many conditions, the cell wall is also a dynamic structure, undergoing degradation and remodeling by ‘autolysins’, enzymes that break down PG. Cell division, for example, requires extensive PG remodeling, especially during separation of daughter cells, which depends heavily upon the activity of amidases. However, in Vibrio cholerae, we demonstrate that amidase activity alone is insufficient for daughter cell separation and that lytic transglycosylases RlpA and MltC both contribute to this process. MltC and RlpA both localize to the septum and are functionally redundant under normal laboratory conditions; however, only RlpA can support normal cell separation in low‐salt media. The division‐specific activity of lytic transglycosylases has implications for the local structure of septal PG, suggesting that there may be glycan bridges between daughter cells that cannot be resolved by amidases. We propose that lytic transglycosylases at the septum cleave PG strands that are crosslinked beyond the reach of the highly regulated activity of the amidase and clear PG debris that may block the completion of outer membrane invagination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号