首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone resorption requires the adhesion of osteoclasts to extracellular matrix (ECM) components, a process mediated by the αvβ3 integrin. Following engagement with the ECM, integrin receptors signal via multiple downstream effectors, including the integrin‐linked kinase (ILK). In order to characterize the physiological role of ILK in bone resorption, we generated mice with an osteoclast‐specific Ilk gene ablation by mating mice with a floxed Ilk allele with TRAP‐Cre transgenic mice. The TRAP‐Cre mice specifically excised floxed alleles in osteoclasts, as revealed by crossing them with the ROSA26R reporter strain. Osteoclast‐specific Ilk mutant mice appeared phenotypically normal, but histomorphometric analysis of the proximal tibia revealed an increase in bone volume and trabecular thickness. Osteoclast‐specific Ilk ablation was associated with an increase in osteoclastogenesis both in vitro and in vivo. However, the mutant osteoclasts displayed a decrease in resorption activity as assessed by reduced pit formation on dentin slices in vitro and decreased serum concentrations of the C‐terminal telopeptide of collagen in vivo. Interestingly, compound heterozygous mice in which one allele of Ilk and one allele of the β3 integrin gene were inactivated (ILK+/?; β) also had increased trabecular thickness, confirming that β3 integrin and Ilk form part of the same genetic cascade. Our results show that ILK is important for the function, but not the differentiation, of osteoclasts. J. Cell. Biochem. 110: 960–967, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Integrin-linked kinase (ILK) is a serine/threonine kinase that interacts with the cytoplasmic domain of beta-integrins and growth factor receptors in response to extracellular signals. It is a key molecule in cell adhesion, proliferation, and cell survival. We found that treating cells with specific inhibitors of the heat shock protein 90 (Hsp90) caused rapid cell detachment. Screening the responsible proteins revealed a decreased amount of ILK in Hsp90 inhibitor-treated cells. ILK was identified as a new Hsp90 client protein because it formed a complex with Hsp90 and Cdc37, and binding was suppressed by Hsp90 inhibitors. Experiments with a series of ILK-deletion mutants revealed that the amino acid residues 377-406 were required for Hsp90 binding. Dissociation of ILK from Hsp90 shortened its half-life by promoting proteasome-dependent degradation. These results indicate that Hsp90 plays an important role in the stability of ILK in cells.  相似文献   

3.
Osmolytes are small molecules that play a central role in cellular homeostasis and the stress response by maintaining protein thermodynamic stability at controlled levels. The underlying physical chemistry that describes how different osmolytes impact folding free energy is well understood, however little is known about their influence on other crucial aspects of protein behavior, such as native‐state conformational changes. Here we investigate this issue with the Hsp90 molecular chaperone, a large dimeric protein that populates a complex conformational equilibrium. Using small angle X‐ray scattering we observe dramatic osmolyte‐dependent structural changes within the native ensemble. The degree to which different osmolytes affect the Hsp90 conformation strongly correlates with thermodynamic metrics of their influence on stability. This observation suggests that the well‐established osmolyte principles that govern stability also apply to large‐scale conformational changes, a proposition that is corroborated by structure‐based fitting of the scattering data, surface area comparisons and m‐value analysis. This approach shows how osmolytes affect a highly cooperative open/closed structural transition between two conformations that differ by a domain‐domain interaction. Hsp90 adopts an additional ligand‐specific conformation in the presence of ATP and we find that osmolytes do not significantly affect this conformational change. Together, these results extend the scope of osmolytes by suggesting that they can maintain protein conformational heterogeneity at controlled levels using similar underlying principles that allow them to maintain protein stability; however the relative impact of osmolytes on different structural states can vary significantly.  相似文献   

4.
Yan S  Sun X  Xiang B  Cang H  Kang X  Chen Y  Li H  Shi G  Yeh ET  Wang B  Wang X  Yi J 《The EMBO journal》2010,29(22):3773-3786
The molecular chaperone heat shock protein 90 (Hsp90) and the co-chaperone/ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP) control the turnover of client proteins. How this system decides to stabilize or degrade the client proteins under particular physiological or pathological conditions is unclear. We report here a novel client protein, the SUMO2/3 protease SENP3, that is sophisticatedly regulated by CHIP and Hsp90. SENP3 is maintained at a low basal level under non-stress condition due to Hsp90-independent CHIP-mediated ubiquitination. Upon mild oxidative stress, SENP3 undergoes thiol modification, which recruits Hsp90. Hsp90/SENP3 association protects SENP3 from CHIP-mediated ubiquitination and subsequent degradation, but this effect of Hsp90 requires the presence of CHIP. Our data demonstrate for the first time that CHIP and Hsp90 interplay with a client alternately under non-stress and stress conditions, and the choice between stabilization and degradation is made by the redox state of the client. In addition, enhanced SENP3/Hsp90 association is found in cancer. These findings provide new mechanistic insight into how cells regulate the SUMO protease in response to oxidative stress.  相似文献   

5.
SIRT2 is a NAD+‐dependent deacetylase that deacetylates a diverse array of protein substrates and is involved in many cellular processes, including regulation of inflammation. However, its precise role in the inflammatory process has not completely been elucidated. Here, we identify heat‐shock protein 90α (Hsp90α) as novel substrate of SIRT2. Functional investigation suggests that Hsp90 is deacetylated by SIRT2, such that overexpression and knock‐down of SIRT2 altered the acetylation level of Hsp90. This subsequently resulted in disassociation of Hsp90 with glucocorticoid receptor (GR), and translocation of GR to the nucleus. This observation was further confirmed by glucocorticoid response element (GRE)‐driven reporter assay. Nuclear translocation of GR induced by SIRT2 overexpression repressed the expression of inflammatory cytokines, which were even more prominent under lipopolysaccharide (LPS) stimulation. Conversely, SIRT2 knock‐down resulted in the up‐regulation of cytokine expression. Mutation analysis indicated that deacetylation of Hsp90 at K294 is critical for SIRT2‐mediated regulation of cytokine expression. These data suggest that SIRT2 reduces the extent of LPS‐induced inflammation by suppressing the expression of inflammatory factors via SIRT2‐Hsp90‐GR axis.  相似文献   

6.
7.
Immunophilin is the collective name given to a family of proteins that bind immunosuppressive drugs: Some immunophilins are Hsp90-binding cochaperones that affect steroid receptor function. Mood and anxiety disorders are stress-related diseases characterized by an impaired function of the mineralocorticoid and glucocorticoid receptors, two of the major regulatory elements of the hypothalamus-pituitary-adrenocortical axis. Genetic variations of the FK506-binding protein of 51-kDa, FKBP51, one of the immunophilins bound to those steroid receptor complexes, were associated with the effectiveness of treatments against depression and with a major risk-factor for the development of post-traumatic stress disorders. Interestingly, immunophilins show polymorphisms and some polymorphic isoforms of FKBP51 correlate with a greater impairment of steroid receptor functions. In this review, we discuss different aspects of the role of FKBP51 in such steroid receptor function and the impact of genetic variants of the immunophilin on the dysregulation of the stress response.  相似文献   

8.
The receptor tyrosine kinase HER2 is associated with a number of human malignancies and is an important therapeutic target. The antibody‐drug conjugate trastuzumab emtansine (T‐DM1; Kadcyla®) is recommended as a first‐line treatment for patients with HER2‐positive metastatic breast cancer. T‐DM1 combines the antibody‐induced effects of the anti‐HER2 antibody trastuzumab (Herceptin®) with the cytotoxic effect of the tubulin inhibitor mertansine (DM1). For DM1 to have effect, the T‐DM1‐HER2 complex has to be internalized and the trastuzumab part of T‐DM1 has to be degraded. HER2 is, however, considered endocytosis‐resistant. As a result of this, trastuzumab is only internalized to a highly limited extent, and if internalized, it is rapidly recycled. The exact reasons for the endocytosis resistance of HER2 are not clear, but it is stabilized by heat‐shock protein 90 (Hsp90) and Hsp90 inhibitors induce internalization and degradation of HER2. HER2 can also be internalized upon activation of protein kinase C, and contrary to trastuzumab alone, the combination of two or more anti‐HER2 antibodies can induce efficient internalization and degradation of HER2. With intention to find ways to improve the action of T‐DM1, we investigated how different ways of inducing HER2 internalization leads to degradation of trastuzumab. The results show that although both Hsp90 inhibition and activation of protein kinase C induce internalization of trastuzumab, only Hsp90 inhibition induces degradation. Furthermore, we find that antibody internalization and degradation are increased when trastuzumab is combined with the clinically approved anti‐HER2 antibody pertuzumab (Perjeta®).  相似文献   

9.
Hsp90 and its co-chaperone Cdc37 are required for the activity of numerous eukaryotic protein kinases. c-Jun N-terminal kinases (JNKs) appear to be Hsp90-independent kinases, as their activity is unaffected by Hsp90 inhibition. It is currently unknown why some protein kinases are Hsp90- and Cdc37-dependent for their function, while others are not. Therefore, we investigated what structural motifs within JNKs confer or defer Hsp90 and Cdc37 interaction. Both Hsp90 and Cdc37 recognized structural features that were exposed or destabilized upon deletion of JNK1alpha1's N-terminal non-catalytic structural motif, while only Hsp90 bound JNK when its C-terminal non-catalytic structural motif was deleted. Mutations in JNK's activation loop that are known to constitutively activate or inactivate its kinase activity had no effect on JNK's lack of interaction with Hsp90 and Cdc37. Our findings suggest a model in which Hsp90 and Cdc37 each recognize distinct features within the catalytic domains of kinases.  相似文献   

10.
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.  相似文献   

11.
Larval Galleria melonella(L.)hemocytes form microaggregates in response to stimulation by Gram-positive bacteria Hemocyte adhesion to foreign materials is mediated by the CAMP/protein kinase A pathway and the B-subunit of cholera toxin using a cAMP-independent mechanism.Cholera toxin-induced microaggregation was inhibited by the integrin inhibitory RGDS peptide,implying integrins may be part of the mechanism.Based on the types of mammalian integrin-antibody reactive proteins affecting hemocyte adhesion and bacterial-induced responses ars,ory,Ai,and B3 subunits occred on both granular cell and plasmatocyte hemocyte subtypes.A fluorescent band representing the binding of rabbit as-integrin subunit antibodies occurred between adhering heterotypic hemocytes.The frequency of the bands was increased by cholera toxin.The as andβrabbit integrin subunit antibodies inhibited removal of Bacillus subtilis(Cohn)from the hemolymph in vivo,A as ir-specific synthetic peptide blocker similarly diminished hemocyte function whereas the 0v Bs-specific inhibitory peptide and the corresponding integrin subunit antibodies did not influence nonself hemocyte activities.Western blots revealed several proteins reacting with a given integrin-antibody subtype.Thus integrin-antibody reactive proteins(which may include integrins)with possible as and B epitopes modulate immediate hemocyte function.Confocal microscopy established plasmatocyte adhesion to and rosetting over substrata followved by granular cell microaggregate adhesion to plasmatocytes during early stage nodulation.  相似文献   

12.
Src kinase plays an important role in integrin signaling by regulating cytoskeletal organization and cell remodeling. Previous in vivo studies have revealed that the SH3 domain of c‐Src kinase directly associates with the C‐terminus of β3 integrin cytoplasmic tail. Here, we explore this binding interface with a combination of different spectroscopic and computational methods. Chemical shift mapping, PRE, transferred NOE and CD data were used to obtain a docked model of the complex. This model suggests a different binding mode from the one proposed through previous studies wherein, the C‐terminal end of β3 spans the region in between the RT and n‐Src loops of SH3 domain. Furthermore, we show that tyrosine phosphorylation of β3 prevents this interaction, supporting the notion of a constitutive interaction between β3 integrin and Src kinase.  相似文献   

13.
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation.  相似文献   

14.
Clusterin, a protein chaperone found at high levels in physiological fluids, is expressed in nervous tissue and upregulated in several neurological diseases. To assess relevance to amyotrophic lateral sclerosis (ALS) and other motor neuron disorders, clusterin expression was evaluated using long-term dissociated cultures of murine spinal cord and SOD1G93A transgenic mice, a model of familial ALS. Motor neurons and astrocytes constitutively expressed nuclear and cytoplasmic forms of clusterin, and secreted clusterin accumulated in culture media. Although clusterin can be stress inducible, heat shock failed to increase levels in these neural cell compartments despite robust upregulation of stress-inducible Hsp70 (HspA1) in non-neuronal cells. In common with HSPs, clusterin was upregulated by treatment with the Hsp90 inhibitor, geldanamycin, and thus could contribute to the neuroprotection previously identified for such compounds in disease models. Clusterin expression was not altered in cultured motor neurons expressing SOD1G93A by gene transfer or in presymptomatic SOD1G93A transgenic mice; however, clusterin immunolabeling was weakly increased in lumbar spinal cord of overtly symptomatic mice. More striking, mutant SOD1 inclusions, a pathological hallmark, were strongly labeled by anti-clusterin. Since secreted, as well as intracellular, mutant SOD1 contributes to toxicity, the extracellular chaperoning property of clusterin could be important for folding and clearance of SOD1 and other misfolded proteins in the extracellular space. Evaluation of chaperone-based therapies should include evaluation of clusterin as well as HSPs, using experimental models that replicate the control mechanisms operant in the cells and tissue of interest.  相似文献   

15.
Confocal laser scanning microscopy was used to identify the cells within organotypic slice cultures of the developing mouse cerebral cortex that respond to estradiol treatment by phosphorylation of ERK1 and ERK2. Estrogen‐responsive cells resembled neurons morphologically and expressed the neuronal marker microtubule‐associated protein 2B. The intracellular distribution of the phospho‐ERK signal was both cytoplasmic and nuclear, but inhibition of protein synthesis abolished the appearance of the nuclear signal. ERK1and ERK2 also coimmunoprecipitated with heat shock protein 90 (Hsp90) in the cerebral cortical explants. Geldanamycin effectively disrupted this association and prevented ERK phosphorylation. Surprisingly, MEK2 but not MEK1 was the principal mediator of estradiol‐induced activation of ERK. Our data demonstrate the requirement for Hsp90 in estrogen‐induced activation of ERK1 and ERK2 by MEK2 in the developing mouse cerebral cortex and also provide insight into alternative mechanisms by which estradiol may influence cytoplasmic and nuclear events in responsive neurons via the MAP kinase cascade. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 1–12, 2002  相似文献   

16.
Rosmarinic acid is a major phenylpropanoid isolated from Prunella vulgaris L., which is a composition of herbal tea for centuries in China. However, the anti‐invasion activity on Ls174‐T human colon carcinoma cells has not been studied. In this study, we investigated the anti‐metastasis functions according to wound healing assay, adhesion assay, and Transwell assay and found that rosmarinic acid could inhibit migration, adhesion, and invasion dose‐dependently. Rosmarinic acid also could decrease the level of reactive oxygen species by enhancing the level of reduced glutathione hormone. In addition, rosmarinic acid repressed the activity and expression of matrix metalloproteinase‐2,9. According to Western blot and quantitative real‐time PCR assay, rosmarinic acid may inhibit metastasis from colorectal carcinoma mainly via the pathway of extracellular signal‐regulated kinase. In animal experiment, intraperitoneal administration of 2 mg of rosmarinic acid reduced weight of tumors and the number of lung nodules significantly compared with those of control group. Therefore, these results demonstrated that rosmarinic acid can effectively inhibit tumor metastasis in vitro and in vivo. J. Cell. Biochem. 111: 370–379, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
The idea of direct differentiation of somatic cells into other differentiated cell types has attracted a great interest recently. Rho‐kinase inhibitor Y‐27632 (ROCKi) is a potential drug molecule, which has been reported to support the gene expressions typical for the chondrocytes, thus restricting their phenotypic conversion to fibroblastic cells upon the cellular expansion. In this study, we have investigated the short‐term biological responses of ROCKi to human primary foreskin fibroblasts. The fibroblast cells were exposed to 1 and 10 μM ROCKi treatments. A proteomics analysis revealed expression changes of 56 proteins, and a further protein pathway analysis suggested their association with the cell morphology, the organization, and the increased cellular movement and the proliferation. These functional responses were confirmed by a Cell‐IQ time‐lapse imaging analysis. Rho‐kinase inhibitor treatment increased the cellular proliferation up to twofold during the first 12 h, and a wound model based migration assay showed 50% faster filling of the mechanically generated wound area. Additionally, significantly less vinculin‐associated focal adhesions were present in the ROCKi‐treated cells. Despite the marked changes in the cell behavior, ROCKi was not able to induce the expression of the chondrocyte‐specific genes, such as procollagen α1(II) and aggrecan.  相似文献   

20.
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a central role in maintaining cellular homeostasis by facilitating activation of a large number of client proteins. ATP-dependent client activation by Hsp90 is tightly regulated by a host of co-chaperone proteins that control progression through the activation cycle. ATPase stimulation of Hsp90 by Aha1p requires a conserved RKxK motif that interacts with the catalytic loop of Hsp90. In this study, we explore the role of this RKxK motif in the biological and biochemical properties of Hch1p. We found that this motif is required for Hch1p-mediated ATPase stimulation in vitro, but mutations that block stimulation do not impair the action of Hch1p in vivo. This suggests that the biological function of Hch1p is not directly linked to ATPase stimulation. Moreover, a mutation in the catalytic loop of Hsp90 specifically impairs ATPase stimulation by Aha1p but not by Hch1p. Our work here suggests that both Hch1p and Aha1p regulate Hsp90 function through interaction with the catalytic loop but do so in different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号