首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults.

Results

To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups.

Conclusions

The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host insect.
  相似文献   

2.
Collective migration of loosely or closely associated cell groups is prevalent in animal development, physiological events, and cancer metastasis. However, our understanding of the mechanisms of collective cell migration is incomplete. Drosophila border cells provide a powerful in vivo genetic model to study collective migration and identify essential genes for this process. Using border cell-specific RNAi-silencing in Drosophila, we knocked down 360 conserved signaling transduction genes in adult flies to identify essential pathways and genes for border cell migration. We uncovered a plethora of signaling genes, a large proportion of which had not been reported for border cells, including Rack1 (Receptor of activated C kinase) and brk (brinker), mad (mother against dpp), and sax (saxophone), which encode three components of TGF-β signaling. The RNAi knock down phenotype was validated by clonal analysis of Rack1 mutants. Our data suggest that inhibition of Src activity by Rack1 may be important for border cell migration and cluster cohesion maintenance. Lastly, results from our screen not only would shed light on signaling pathways involved in collective migration during embryogenesis and organogenesis in general, but also could help our understanding for the functions of conserved human genes involved in cancer metastasis.  相似文献   

3.
The last few decades have seen a growing number of species invasions globally, including many insect species. In drosophilids, there are several examples of successful invasions, i.e. Zaprionus indianus and Drosophila subobscura some decades ago, but the most recent and prominent example is the invasion of Europe and North America by the pest species, Drosophila suzukii. During the invasive process, species often encounter diverse environmental conditions that they must respond to, either through rapid genetic adaptive shifts or phenotypic plasticity, or by some combination of both. Consequently, invasive species constitute powerful models for investigating various questions related to the adaptive processes that underpin successful invasions. In this paper, we highlight how Drosophila have been and remain a valuable model group for understanding these underlying adaptive processes, and how they enable insight into key questions in invasion biology, including how quickly adaptive responses can occur when species are faced with new environmental conditions.  相似文献   

4.
Plant invasions may result in novel plant-herbivore interactions. However, we know little about whether and how invasive plants can mediate native above- and belowground herbivore interactions. In this study, we conducted greenhouse experiments to examine the interaction between a native defoliating beetle, Cassida piperata, and a native root-knot nematode, Meloidogyne incognita, on the invasive alligator weed, Alternanthera philoxeroides. We also included their native host A. sessilis in the experiments to examine whether the patterns of above- and belowground herbivore interaction vary with host plants (invasive vs. native). We analyzed total carbon and nitrogen in leaves and roots attacked by M. incognita and C. piperata. M. incognita slightly negatively affected feeding by C. piperata on A. philoxeroides, and the leaf area damaged decreased as the number of M. incognita increased. M. incognita had a negative impact on total leaf nitrogen, but had no impact on total leaf carbon. M. incognita egg production on A. philoxeroides roots decreased as the amount of damage caused by C. piperata increased. Herbivory by C. piperata did not affect total root carbon or nitrogen. M. incognita and C. piperata did not affect each other on the native plant A. sessilis. These results suggest that invasive plants can mediate native above- and belowground herbivore interactions. The knowledge of how invasive plants affect those interactions is crucial for better understanding the impacts of biological invasions on native above- and belowground organisms.  相似文献   

5.
Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.  相似文献   

6.
7.
The interaction between Candida albicans and its host cells is characterized by a complex interplay between the expression of fungal virulence factors, which results in adherence, invasion and cell damage, and the host immune system, which responds by secreting proinflammatory cytokines, activating antimicrobial activities and killing the fungal pathogen. In this review we describe this interplay by taking a closer look at how C. albicans pathogenicity is induced and executed, how the host responds in order to prevent and clear an infection, and which mechanisms C. albicans has evolved to bypass these immune responses to avoid clearance. Furthermore, we review studies that show how the presence of other microorganisms affects this interplay.  相似文献   

8.
Harmonia axyridis (Coleoptera: Coccinellidae) has been introduced widely for biological control of agricultural pests. Harmonia axyridis has established in four continents outside of its native range in Asia and it is considered an invasive alien species (IAS). Despite a large body of work on invasion ecology, establishment mechanisms of IAS and their interactions with natural enemies remain open questions. Parasites, defined as multicellular organisms that do not directly kill the host, could potentially play an important role in regulating host populations. This study presents a review of the parasites of H. axyridis, discussing their distributions and effects on host populations across the host’s native and invasive range. These parasites are: Hesperomyces virescens Thaxt. fungi, Coccipolipus hippodamiae (McDaniel and Morrill) mites, and Parasitylenchus bifurcatus Poinar and Steenberg nematodes.  相似文献   

9.
10.
A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3’ and 5’ long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila.  相似文献   

11.
12.
The Drosophila head and body have a regular species-specific pattern of strictly defined number of external sensory organs—macrochaetae (large bristles). The pattern constancy and relatively simple organization of each bristle organ composed of only four specialized cells makes macrochaetae a convenient model to study the developmental patterns of spatial structures with a fixed number of elements in specific positions as well as the mechanisms of cell differentiation. The experimental data on the major genes and their products controlling three stages of macrochaetae development—the emergence of proneural clusters in the imaginal disc ectoderm, the precursor cell determination in the proneural clusters, and the specialization of cells of the definitive sensory organ—were reviewed. The role of the achaete-scute gene complex, EGFR and Notch signaling, and selector genes in these processes was considered. Analysis of published data allowed us to propose an integrated diagram of the system controlling macrochaetae development in D. melanogaster.  相似文献   

13.

Background

The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade.

Results

The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group.

Conclusions

The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of these motile intestinal lactobacilli.
  相似文献   

14.
Bacterial infections typically elicit a strong Heat Shock Response (HSR) in host cells. However, the gastric pathogen Helicobacter pylori has the unique ability to repress this response, the mechanism of which has yet to be elucidated. This study sought to characterize the underlying mechanisms by which H. pylori down-modulates host HSP expression upon infection. Examination of isogenic mutant strains of H. pylori defective in components of the type IV secretion system (T4SS), identified the secretion substrate, CagA, to be essential for down-modulation of the HSPs HSPH1 (HSP105), HSPA1A (HSP72), and HSPD1 (HSP60) upon infection of the AGS gastric adenocarcinoma cell line. Ectopic expression of CagA by transient transfection was insufficient to repress HSP expression in AGS or HEK293T cells, suggesting that additional H. pylori factors are required for HSP repression. RT-qPCR analysis of HSP gene expression in AGS cells infected with wild-type H. pylori or isogenic cagA-deletion mutant found no significant change to account for reduced HSP levels. In summary, this study identified CagA to be an essential bacterial factor for H. pylori-mediated suppression of host HSP expression. The novel finding that HSPH1 is down-modulated by H. pylori further highlights the unique ability of H. pylori to repress the HSR within host cells. Elucidation of the mechanism by which H. pylori achieves HSP repression may prove to be beneficial in the identification of novel mechanisms to inhibit the HSR pathway and provide further insight into the interactions between H. pylori and the host gastric epithelium.  相似文献   

15.
Neurodegeneration, a pathological state accompanied by brain neuronal necrosis and changes in behavior, has been described for many animal species. However, the genetic control and molecular mechanisms of this process are yet vague. A large collection of neurodegenerative mutants of a model object, Drosophila melanogaster, can enhance understanding of these mechanisms. In this work, we have demonstrated that genetically determined anatomical changes in Drosophila brain are accompanied by a decreased lifespan and deviations from the wild-type sexual behavior and locomotor activity. It has been found that the genes vacuous and loechrig are candidates for molecular genetic analysis in eight mutants from the collection.  相似文献   

16.
Every population possesses genetic variations which are achieved through gene mutation, genetic recombination, hybridization, gene duplication etc. These genetic variations provide raw materials for evolutionary forces to create a better surviving species. Genetic polymorphism is reflected at every level in the populations, for example, at phenotypic, chromosomal, protein and DNA levels. Protein or enzyme polymorphisms have been well studied in various organisms including Drosophila and humans. Drosophila has proven to be a good model organism for carrying out polymorphism studies. Among the different species of Drosophila, there is a wide variation in the levels of allozyme polymorphisms and heterozygosities which depends upon species, geographical regions, number and nature of loci in question etc. In Drosophila, the average polymorphic enzyme loci and average heterozygosity ranges from 35 to 70 percent and 10 to 20 percent respectively. The genetic differentiation as observed through allozyme or isozyme variation affords an important parameter in evaluating the phylogenetic relationships between different species of Drosophila and also for discussing the adaptive significance of allozyme polymorphisms. Therefore, this review attempts to compile all studies on allozyme polymorphism in Drosophila that have been undertaken so far.  相似文献   

17.
Antimicrobial and immunomodulatory potential of various Lactobacillus reuteri strains is closely connected to their metabolite production profile under given cultivation conditions. We determined the in vitro production of antimicrobial substances such as organic acids, ethanol, and reuterin by four strains of L. reuteri (L. reuteri E, L. reuteri KO5, L. reuteri CCM 3625, and L. reuteri ATCC 55730). All studied L. reuteri strains showed the ability to produce lactic acid, acetic acid, and ethanol with concominant consumption of glucose and together with phenyllactic acid—a potent antifungal compound—with concominant consumption of phenylalanine. The reuterin production from glycerol was confirmed for all analyzed lactobacilli strains except L. reuteri CCM 3625. Production of organic acids, ethanol, and reuterin is significantly involved in antimicrobial activity of lactobacilli which was determined using the dual-culture overlay diffusion method against six indicator bacteria and five indicator moulds. In comparison to the referential L. reuteri ATCC 55730, the highest inhibition potential was observed against Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 3955. Among analyzed indicators of moulds, the growth of Alternaria alternata CCM F-128 was the most inhibited by all four analyzed L. reuteri strains. Finally, the immunomodulatory potential of analyzed lactobacilli were proven by the determination of the in vitro production of biogenic amines histamine and tyramine. L. reuteri CCM 3625 was able to produce tyramine, and L. reuteri E and L. reuteri KO5 were able to produce histamine under given cultivation conditions.  相似文献   

18.
The bithorax (BX) complex of Drosophila is a complex polygenic region with a multifactorial system of regulation. One of the levels of the regulatory system of the BX complex is its association with the nuclear skeleton structures through a specific interaction of the M/SAR DNA with the nuclear matrix proteins. In the present work, M/SAR elements were mapped on the molecular-genetic map of the region. All of the elements examined were found to colocalize with regulatory elements and form clusters that restrict/bracket the genetically active domains. All M/SAR DNA revealed was shown to bins specifically to the purified Drosophila melanogaster lamin.  相似文献   

19.
20.
To identify and investigate the role of surface layer proteins (SLPs) on the probiotic properties of Lactobacillus strains, SLPs were extracted from Lactobacillus bulgaricus fb04, L. rhamnosus fb06, L. gasseri fb07, and L. acidophilus NCFM by 5 mol/L lithium chloride. The molecular masses of the four SLPs were approximately 45–47 kDa as analyzed by SDS-PAGE. Hydrophobic amino acids were the main components of the four SLPs. The secondary structure content of the four SLPs showed extensive variability among different strains. After the SLPs were removed from the cell surface, the autoaggregation ability, coaggregation ability, and gastrointestinal tolerability of the four lactobacilli were significantly reduced as compared with the intact cells (P?<?0.05). When exposed to bile salt stress, L. rhamnosus fb06, L. gasseri fb07, and L. acidophilus NCFM expressed more SLPs as determined by Bradford method. In conclusion, the four lactobacilli all possessed functional SLPs, which had positive contributions to the probiotic properties of the four Lactobacillus strains. This research could reveal the biological contributions of SLPs from Lactobacillus strains and offer a theoretical basis for the application of lactobacilli and their SLPs in food and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号