首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HU (Histone‐like protein from Escherichia coli strain U93) is the most conserved nucleoid‐associated protein in eubacteria, but how it impacts global chromosome organization is poorly understood. Using single‐molecule tracking, we demonstrate that HU exhibits nonspecific, weak, and transitory interactions with the chromosomal DNA. These interactions are largely mediated by three conserved, surface‐exposed lysine residues (triK), which were previously shown to be responsible for nonspecific binding to DNA. The loss of these weak, transitory interactions in a HUα(triKA) mutant results in an over‐condensed and mis‐segregated nucleoid. Mutating a conserved proline residue (P63A) in the HUα subunit, deleting the HUβ subunit, or deleting nucleoid‐associated naRNAs, each previously implicated in HU’s high‐affinity binding to kinked or cruciform DNA, leads to less dramatically altered interacting dynamics of HU compared to the HUα(triKA) mutant, but highly expanded nucleoids. Our results suggest HU plays a dual role in maintaining proper nucleoid volume through its differential interactions with chromosomal DNA. On the one hand, HU compacts the nucleoid through specific DNA structure‐binding interactions. On the other hand, it decondenses the nucleoid through many nonspecific, weak, and transitory interactions with the bulk chromosome. Such dynamic interactions may contribute to the viscoelastic properties and fluidity of the bacterial nucleoid to facilitate proper chromosome functions.  相似文献   

2.
The nature of living systems and their apparent resilience to the second law of thermodynamics has been the subject of extensive investigation and imaginative speculation. The segregation and compartmentalization of proteins is one manifestation of this departure from equilibrium conditions; the effect of which is now beginning to be elucidated. This should not come as a surprise, as even a cursory inspection of cellular processes reveals the large amount of energetic cost borne to maintain cell‐scale patterns, separations and gradients of molecules. The G‐proteins, kinases, calcium‐responsive proteins have all been shown to contain reaction cycles that are inherently coupled to their signalling activities. G‐proteins represent an important and diverse toolset used by cells to generate cellular asymmetries. Many small G‐proteins in particular, are dynamically acylated to modify their membrane affinities, or localized in an activity‐dependent manner, thus manipulating the mobility modes of these proteins beyond pure diffusion and leading to finely tuned steady state partitioning into cellular membranes. The rates of exchange of small G‐proteins over various compartments, as well as their steady state distributions enrich and diversify the landscape of possibilities that GTPase‐dependent signalling networks can display over cellular dimensions. The chemical manipulation of spatial cycles represents a new approach for the modulation of cellular signalling with potential therapeutic benefits.  相似文献   

3.
In bacteria, chromosome dynamics and gene expression are modulated by nucleoid‐associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation. GapR also affects global gene expression with a chromosomal bias from origin to terminus, which is associated with a similar general bias in GapR binding activity along the chromosome. Strikingly, this asymmetric localization cannot be explained by the distribution of GapR binding sites on the chromosome. Instead, we present a mechanistic model in which the spatiotemporal dynamics of GapR are primarily driven by the progression of the replication forks. This model represents a simple mechanism of cell cycle regulation, in which DNA‐binding activity is intimately linked to the action of DNA replication.  相似文献   

4.
5.
In Escherichia coli, cytokinesis is orchestrated by FtsZ, which forms a Z-ring to drive septation. Spatial and temporal control of Z-ring formation is achieved by the Min and nucleoid occlusion (NO) systems. Unlike the well-studied Min system, less is known about the anti-DNA guillotining NO process. Here, we describe studies addressing the molecular mechanism of SlmA (synthetic lethal with a defective Min system)-mediated NO. SlmA contains a TetR-like DNA-binding fold, and chromatin immunoprecipitation analyses show that SlmA-binding sites are dispersed on the chromosome except the Ter region, which segregates immediately before septation. SlmA binds DNA and FtsZ simultaneously, and the SlmA-FtsZ structure reveals that two FtsZ molecules sandwich a SlmA dimer. In this complex, FtsZ can still bind GTP and form protofilaments, but the separated protofilaments are forced into an anti-parallel arrangement. This suggests that SlmA may alter FtsZ polymer assembly. Indeed, electron microscopy data, showing that SlmA-DNA disrupts the formation of normal FtsZ polymers and induces distinct spiral structures, supports this. Thus, the combined data reveal how SlmA derails Z-ring formation at the correct place and time to effect NO.  相似文献   

6.
7.
Morphogenesis is driven by small cell shape changes that modulate tissue organization. Apical surfaces of proliferating epithelial sheets have been particularly well studied. Currently, it is accepted that a stereotyped distribution of cellular polygons is conserved in proliferating tissues among metazoans. In this work, we challenge these previous findings showing that diverse natural packed tissues have very different polygon distributions. We use Voronoi tessellations as a mathematical framework that predicts this diversity. We demonstrate that Voronoi tessellations and the very different tissues analysed share an overriding restriction: the frequency of polygon types correlates with the distribution of cell areas. By altering the balance of tensions and pressures within the packed tissues using disease, genetic or computer model perturbations, we show that as long as packed cells present a balance of forces within tissue, they will be under a physical constraint that limits its organization. Our discoveries establish a new framework to understand tissue architecture in development and disease.  相似文献   

8.
9.
10.
A likely function of the Lambda FI gene product (gpFI) is condensation of developmental forms of the bacteriophage DNA in the host cell. Several characteristics of gpFI support this hypothesis: it is similar in its structure and properties toE. coli NS proteins whose involvement in the bacterial DNA condensation has been established and it comigrates with DNA during fractionation of host cell lysate through a sucrose gradient.  相似文献   

11.
12.
The aggregation of proteins as a result of intrinsic or environmental stress may be cytoprotective, but is also linked to pathophysiological states and cellular ageing. We analysed the principles of aggregate formation and the cellular strategies to cope with aggregates in Escherichia coli using fluorescence microscopy of thermolabile reporters, EM tomography and mathematical modelling. Misfolded proteins deposited at the cell poles lead to selective re‐localization of the DnaK/DnaJ/ClpB disaggregating chaperones, but not of GroEL and Lon to these sites. Polar aggregation of cytosolic proteins is mainly driven by nucleoid occlusion and not by an active targeting mechanism. Accordingly, cytosolic aggregation can be efficiently re‐targeted to alternative sites such as the inner membrane in the presence of site‐specific aggregation seeds. Polar positioning of aggregates allows for asymmetric inheritance of damaged proteins, resulting in higher growth rates of damage‐free daughter cells. In contrast, symmetric damage inheritance of randomly distributed aggregates at the inner membrane abrogates this rejuvenation process, indicating that asymmetric deposition of protein aggregates is important for increasing the fitness of bacterial cell populations.  相似文献   

13.
Integrin‐ and cadherin‐mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force‐mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.  相似文献   

14.
15.
Understanding the mechanisms of early embryonic patterning and the timely allocation of specific cells to embryonic regions and fates as well as their development into tissues and organs, is a fundamental problem in Developmental Biology. The classical explanation for this process had been built around the notion of positional information. Accordingly the programmed appearance of sources of Morphogens at localized positions within a field of cells directs their differentiation. Recently, the development of organs and tissues from unpatterned and initially identical stem cells (adult and embryonic) has challenged the need for positional information and even the integrity of the embryo, for pattern formation. Here we review the emerging area of organoid biology from the perspective of Developmental Biology. We argue that the events underlying the development of these systems are not purely linked to “self‐organization,” as often suggested, but rather to a process of genetically encoded self‐assembly where genetic programs encode and control the emergence of biological structures.  相似文献   

16.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

17.
18.
19.
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
Self‐assembly of artificially designed proteins is extremely desirable for nanomaterials. Here we show a novel strategy for the creation of self‐assembling proteins, named “Nanolego.” Nanolego consists of “structural elements” of a structurally stable symmetrical homo‐oligomeric protein and “binding elements,” which are multiple heterointeraction proteins with relatively weak affinity. We have established two key technologies for Nanolego, a stabilization method and a method for terminating the self‐assembly process. The stabilization method is mediated by disulfide bonds between Cysteine‐residues incorporated into the binding elements, and the termination method uses “capping Nanolegos,” in which some of the binding elements in the Nanolego are absent for the self‐assembled ends. With these technologies, we successfully constructed timing‐controlled and size‐regulated filament‐shape complexes via Nanolego self‐assembly. The Nanolego concept and these technologies should pave the way for regulated nanoarchitecture using designed proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号