首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The protein kinase TOR (target-of-rapamycin) upregulates translation initiation in eukaryotes, but initiation restart after long ORF translation is restricted by largely unknown pathways. The plant viral reinitiation factor transactivator-viroplasmin (TAV) exceptionally promotes reinitiation through a mechanism involving retention on 80S and reuse of eIF3 and the host factor reinitiation-supporting protein (RISP) to regenerate reinitiation-competent ribosomal complexes. Here, we show that TAV function in reinitiation depends on physical association with TOR, with TAV-TOR binding being critical for both translation reinitiation and viral fitness. Consistently, TOR-deficient plants are resistant to viral infection. TAV triggers TOR hyperactivation and S6K1 phosphorylation in planta. When activated, TOR binds polyribosomes concomitantly with polysomal accumulation of eIF3 and RISP--a novel and specific target of TOR/S6K1--in a TAV-dependent manner, with RISP being phosphorylated. TAV mutants defective in TOR binding fail to recruit TOR, thereby abolishing RISP phosphorylation in polysomes and reinitiation. Thus, activation of reinitiation after long ORF translation is more complex than previously appreciated, with TOR/S6K1 upregulation being the key event in the formation of reinitiation-competent ribosomal complexes.  相似文献   

2.
Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF-containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA-ROP2), contain high levels of active TOR. ROP2 physically interacts with and, when GTP-bound, activates TOR in vitro. TOR activation in response to auxin is abolished in ROP-deficient rop2 rop6 ROP4 RNAi plants. GFP-TOR can associate with endosome-like structures in ROP2-overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA-ROP2 is efficient in loading uORF-containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD-8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin.  相似文献   

3.
4.
Park HS  Himmelbach A  Browning KS  Hohn T  Ryabova LA 《Cell》2001,106(6):723-733
The cauliflower mosaic virus transactivator, TAV, controls translation reinitiation of major open reading frames on polycistronic RNA. We show here that TAV function depends on its association with polysomes and eukaryotic initiation factor eIF3 in vitro and in vivo. TAV physically interacts with eIF3 and the 60S ribosomal subunit. Two proteins mediating these interactions were identified: eIF3g and 60S ribosomal protein L24. Transient expression of eIF3g and L24 in plant protoplasts strongly affects TAV-mediated reinitiation activity. We demonstrate that TAV/eIF3/40S and eIF3/TAV/60S ternary complexes form in vitro, and propose that TAV mediates efficient recruitment of eIF3 to polysomes, allowing translation of polycistronic mRNAs by reinitiation, overcoming the normal cell barriers to this process.  相似文献   

5.
The Saccharomyces cerevisiae GCN4 mRNA 5'-leader contains four upstream open reading frames (uORFs) and the CPA1 leader contains a single uORF. To determine how these uORFs control translation, we examined mRNAs containing these leaders in cell-free translation extracts to determine where ribosomes were loaded first and where they were loaded during steady-state translation. Ribosomes predominantly loaded first at GCN4 uORF1. Following its translation, but not the translation of uORF4, they efficiently reinitiated protein synthesis at Gcn4p. Adding purified eIF2 increased reinitiation at uORFs 3 or 4 and reduced reinitiation at Gcn4p. This indicates that eIF2 affects the site of reinitiation following translation of GCN4 uORF1 in vitro. In contrast, for mRNA containing the CPA1 uORF, ribosomes reached the downstream start codon by scanning past the uORF. Addition of arginine caused ribosomes that had synthesized the uORF polypeptide to stall at its termination codon, reducing loading at the downstream start codon, apparently by blocking scanning ribosomes, and not by affecting reinitiation. The GCN4 and CPA1 uORFs thus control translation in fundamentally different ways.  相似文献   

6.
Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2β and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2β, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.  相似文献   

7.
Upstream open reading frames (uORFs) are protein coding elements in the 5′ leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5′ leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.  相似文献   

8.
9.
10.
The goal of these studies was to investigate the mechanisms by which amino acid supply regulates global rates of protein synthesis as well as the translation of ribosomal protein (rp) mRNAs in liver. In the experiments conducted, male weanling rats were trained over a 2-wk period to consume their daily food intake within 3 h. On day 14, rats were fed the control diet or an isocaloric, isonitrogenous diet lacking glycine, tryptophan, leucine, or the branched-chain amino acids (BCAA) for 1 h. Feeding Trp-, Leu-, or BCAA-deficient diets resulted in significant reductions in serum insulin, hepatic protein synthesis, eukaryotic initiation factor 2B (eIF2B) activity, and phosphorylation of eIF4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase (S6K1). Phosphorylation of eIF2alpha was inversely related to eIF2B activity under all conditions. Alterations in the hepatic synthesis of rp were assessed by changes in the distribution of rp (S4, S8, L26) mRNAs across sucrose density gradients and compared with non-rp (beta-actin, albumin) mRNAs. In all dietary treatments, non-rp mRNAs were mostly polysome associated. Conversely, the proportion of rp mRNAs residing in polysomes was two- to fivefold less in rats fed diets lacking tryptophan, leucine, or BCAA compared with rats fed the control diet. Total hepatic abundance of all mRNAs examined did not differ among treatment groups. For all parameters examined, there were no differences between rats fed the glycine-deficient diet and rats fed the control diet. The data suggest that essential amino acid (EAA) deficiency inhibits global rates of liver protein synthesis via a block in translation initiation. Additionally, the translation of rp mRNAs is preferentially repressed in association with decreased S6K1 phosphorylation.  相似文献   

11.
Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.  相似文献   

12.
Integration of mouse mammary tumor virus (MMTV) at the common integration site Int6 occurs in the gene encoding eIF3e, the p48 subunit of translation initiation factor eIF3. Integration is at any of several introns of the Eif3e gene and causes the expression of truncated Eif3e mRNAs. Ectopic expression of the truncated eIF3e protein resulting from integration at intron 5 (3e5) induces malignant transformation, but by an unknown mechanism. Because eIF3e makes up at least part of the binding site for eIF4G, we examined the effects of 3e5 expression on protein synthesis. We developed an NIH3T3 cell line that contains a single copy of the 3e5 sequence at a predetermined genomic site. Co-immunoprecipitation indicated diminished binding of eIF3 to eIF4G, signifying a reduction in recruitment of the mRNA-unwinding machinery to the 43 S preinitiation complex. Cell growth and overall protein synthesis were decreased. Translation driven by the eIF4G-independent hepatitis C virus internal ribosome entry sequence (HCV IRES) in a bicistronic mRNA was increased relative to cap-dependent translation. Endogenous mRNAs encoding XIAP, c-Myc, CYR61, and Pim-1, which are translated in a cap-independent manner, were shifted to heavier polysomes whereas mRNAs encoding GAPDH, actin, L32, and L34, which are translated in a cap-dependent manner, were shifted to lighter polysomes. We propose that expression of 3e5 diminishes eIF4G interaction with eIF3 and causes abnormal gene expression at the translational level. The correlation between up-regulation of cap-independent translation and MMTV-induced tumorigenesis contrasts with the well established model for malignant transformation involving up-regulation of highly cap-dependent translation.  相似文献   

13.
Holz MK  Ballif BA  Gygi SP  Blenis J 《Cell》2005,123(4):569-580
In response to nutrients, energy sufficiency, hormones, and mitogenic agents, S6K1 phosphorylates several targets linked to translation. However, the molecular mechanisms whereby S6K1 is activated, encounters substrate, and contributes to translation initiation are poorly understood. We show that mTOR and S6K1 maneuver on and off the eukaryotic initiation factor 3 (eIF3) translation initiation complex in a signal-dependent, choreographed fashion. When inactive, S6K1 associates with the eIF3 complex, while the S6K1 activator mTOR/raptor does not. Cell stimulation promotes mTOR/raptor binding to the eIF3 complex and phosphorylation of S6K1 at its hydrophobic motif. Phosphorylation results in S6K1 dissociation, activation, and subsequent phosphorylation of its translational targets, including eIF4B, which is then recruited into the complex in a phosphorylation-dependent manner. Thus, the eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.  相似文献   

14.
The cauliflower mosaic virus reinitiation factor TAV interacts with host translation initiation factor 3 (eIF3) and the 60S ribosomal subunit to accomplish translation of polycistronic mRNAs. Interaction between TAV and eIF3g is critical for the reinitiation process. Here, we show that eIF4B can preclude formation of the TAV/eIF3 complex via competition with TAV for eIF3g binding; indeed, the eIF4B- and TAV-binding sites on eIF3g overlap. Our data indicate that eIF4B interferes with TAV/eIF3/40S ribosome complex formation during the first initiation event. Consequently, overexpression of TAV in plant protoplasts affects only second initiation events. Transient overexpression of eIF4B in plant protoplasts specifically inhibits TAV-mediated reinitiation of a second ORF. These data suggest that TAV enters the host translation machinery at the eIF4B removal step to stabilize eIF3 on the translating ribosome, thereby allowing translation of polycistronic viral RNA.  相似文献   

15.
16.
17.
18.
Torin 1 is an ATP-competitive TOR inhibitor which inhibits the signaling of TOR and S6K kinase in mammals and plants. The objective of this research is to determine the effect of Torin 1 in a relatively simple and homogeneous plant system such as the NT-1 tobacco suspension cell cultures. Cultures of NT-1 cells were tested with 5, 50, 150 and 250 nM of Torin 1. During kinetics growth of NT-1 tobacco suspension cell cultures, 150 and 250 nM Torin 1 inhibits the early growth and later enhanced the cellular proliferation during exponential growth by means of an increased expression of E2F1 and cyclin B. Furthermore, Torin 1 stimulates the growth of NT-1 cells during log phase with small shaped cell, characteristic of tobacco suspension cell cultures with high mitotic activity.  相似文献   

19.
eIF4G2 (DAP5 or Nat1) is a homologue of the canonical translation initiation factor eIF4G1 in higher eukaryotes but its function remains poorly understood. Unlike eIF4G1, eIF4G2 does not interact with the cap-binding protein eIF4E and is believed to drive translation under stress when eIF4E activity is impaired. Here, we show that eIF4G2 operates under normal conditions as well and promotes scanning downstream of the eIF4G1-mediated 40S recruitment and cap-proximal scanning. Specifically, eIF4G2 facilitates leaky scanning for a subset of mRNAs. Apparently, eIF4G2 replaces eIF4G1 during scanning of 5′ UTR and the necessity for eIF4G2 only arises when eIF4G1 dissociates from the scanning complex. In particular, this event can occur when the leaky scanning complexes interfere with initiating or elongating 80S ribosomes within a translated uORF. This mechanism is therefore crucial for higher eukaryotes which are known to have long 5′ UTRs with highly frequent uORFs. We suggest that uORFs are not the only obstacle on the way of scanning complexes towards the main start codon, because certain eIF4G2 mRNA targets lack uORF(s). Thus, higher eukaryotes possess two distinct scanning complexes: the principal one that binds mRNA and initiates scanning, and the accessory one that rescues scanning when the former fails.  相似文献   

20.
The eIF4E are a family of initiation factors that bind the mRNA 5′ cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5′ TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have ‘moon-lighting’ functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote ‘stress resistance’ and adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号