首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Samuel Caddick 《EMBO reports》2008,9(12):1174-1176
  相似文献   

2.
Philip Hunter 《EMBO reports》2010,11(3):166-169
Psychologists, anthropologists and biologists are uncovering the bigger picture behind the development of empathy and altruismMany philosophers and anthropologists might argue that among the attributes that make humans unique, it is our ability to reason morally that sets us apart from all other animals—perhaps in addition to our capacity for spirituality. From Ancient Greece and the Roman Republic, to sixth century China and the European Enlightenment; philosophers throughout the ages have pondered why humans can feel empathy or behave altruistically—and, indeed, why they even contemplate it. Only later, in the twentieth century, did the biological sciences join the quest for understanding by seeking genetic, neurological and evolutionary explanations of self-awareness and morality.The answer has so far been elusive, as biologists have neither been able to find the ‘moral'' gene—if such a thing exists—nor to identify a specific cluster of neurons or region of the brain that takes care of ethical decision making. Yet, some parts of the picture are emerging and they reveal a relationship between the complex emotional processes that enable empathy and altruism and the advanced cognitive abilities, such as mirror self-recognition (MSR), that emerged with the evolution of the more complex structural and functional components of the brain. In addition, these studies show that many more animal species than we had appreciated, including birds, display more or less primitive versions of these traits.These findings have led to a proliferation of research into ‘human-like'' social behaviour in animals. “Empathy research is really taking off, not only on adult humans in neuroscience or on children, but also animals,” commented Dutch primatologist Frans de Waal, now at Emory University in Atlanta, GA, USA, who analyses the behaviour of chimpanzees to gain insight into their emotional and cognitive abilities. “We have collected thousands of observations of so-called consolation behaviour in chimpanzees. As soon as one among them is distressed, for example losing a fight, falling from a tree, or encountering a snake, others will come over to provide reassurance. They embrace the distressed chimp or try to calm him or her with a kiss and grooming. This behaviour is typical of chimps and other apes, and is used in research on children as the main behavioural marker of ‘sympathetic concern'',” he explained.Clues about the cognitive functions and neurological features underlying ‘sympathetic concern'' can be elucidated by correlating the results from studies of children with those of higher animals that appear capable of feeling empathy and possibly altruism. “In children, MSR emerges between 18–24 months of age and its onset is concurrent with the emergence of empathic behaviour and other indices of the theory of mind,” commented Diana Reiss, a specialist in the evolution of intelligence at Hunter College of the City University of New York, USA. Reiss also pointed out that all species that exhibit MSR have large, complex brains relative to their body weight, with evidence of a developmental link between MSR and empathy, as in human children.Researchers are now working to identify the neurological basis for this link, why it evolved and how it develops with the growing individual. MSR, widely regarded as an important requirement for empathic or altruistic behaviour, has now been identified in several species beyond the great apes and humans. Although MSR is not itself interesting from the perspective of cognitive evolution—it confers no direct selective advantage—as de Waal pointed out, the importance of the mirror test resides in what it tells us about the ability of animals to analyse their relationship with their environment, especially with respect to their social partners. “The mirror test is interesting not because it shows that an animal has the capacity for self-recognition but because of the cognitive abilities that are associated with MSR,” he explained.…biologists have neither been able to find the ‘moral'' gene—if such a thing exists—nor to identify a specific cluster of neurons or region of the brain that takes care of ethical decision makingGordon Gallup originally demonstrated MSR in animals in 1970 (Gallup, 1970). He developed a test in which a visible coloured mark is made on a part of the animal''s body that it cannot see without using a mirror. The test determines whether the animal can use the reflection to locate the mark and then touch or rub it, thus revealing that it can tell the reflection is of itself and not of another individual. Since Gallup''s early experiments, MSR has been seen in a number of animals, most notably dolphins (Reiss & Marino, 2001), the Asian elephant (Plotnik et al, 2006) and, a first for birds, the magpie (Prior et al, 2008).Although MSR has now been demonstrated in several species, it is clearly confined to a small group with highly evolved social interactions. Most species in this group are also set apart from the rest of the animal kingdom because they have spindle neurons, which are believed to be a vital component of large brains capable of empathic social behaviour. These neurons tend to be larger and have a streamlined bipolar structure that is well-adapted for the rapid and coordinated transmission of signals. Also known as von Economo neurons (VEN), they occur in areas of the cortex that process a large number of input signals from other brain regions, in particular the fronto-insular cortex and anterior cingulate cortex. Functionally, the VEN architecture seems to be optimized for the parallel receipt and processing of a large amount of diverse information.“Recent research has reported that spindle neurons are found to occur only in the brains of a few species—humans, the great apes, whales, dolphins and elephants—leading to the speculation that they are a possible obligatory neuronal adaptation in very large brains, permitting fast information processing and transfer along highly specific projections and that evolved in relation to emerging social behaviours,” commented Reiss, who was the first to demonstrate MSR in dolphins along with her colleague Lori Marino, also at Emory University. “It has been further suggested that these specialized brain cells may be involved in processing emotions and underlie empathic behaviour.”Although MSR has now been demonstrated in several species, it is clearly confined to a small group with highly evolved social interactionsFurthermore, the absence of spindle neurons in all other primates suggests that these evolved independently among the great apes and other species that are capable of MSR. This finding leads to the question of whether the brains of higher social animals that have spindle neurons have further common structural or functional features that also evolved in parallel. A recent study suggests that this has happened, at least in the case of elephants and humans, both of which have similar extensive regions of neocortex, which is the neurological structure responsible for sensory perception, motor commands and higher level thought processes (Goodman et al, 2009). The study examined several mammalian species to record the number of nucleotide substitutions in genes that have a crucial role in the brain; the results showed that the most substitutions occur in humans and elephants. This suggests that elephant and human brains have both encountered strong selection for this particular group of genes, which the other animals included in the study clearly had not.However, any suggestion that specific neurological structures are essential, at least for MSR, has been challenged by the discovery of MSR in magpies, which do not even have a neocortex. Although the detailed structures are different, the forebrains of magpies, along with some other members of the crow family, are large and have high neuron densities that are more comparable with humans than other bird species. Although spindle neurons have not yet been observed in magpies, their existence in birds has not been ruled out. In any case, it might be that magpies evolved more complex brain functions without the help of spindle neurons to speed up communication.Nonetheless, there seems to be a clear correlation between the emergence of MSR and empathic behaviour. Magpies, for example, have been subject to extensive research precisely because their ecological conditions have driven the evolution of social intelligence (Prior et al, 2008). They steal and store food, but they also form stable partnerships based to some extent on trust, which requires discrimination between other individuals and judgments about their intentions.…the enhanced cognitive and social interactive abilities of dolphins and great apes have allowed these species to develop rudimentary levels of morality and altruismIn the case of dolphins, the selective pressures they face are associated with their social groups—known as pods—which are able to cooperate with neighbouring groups in times of danger or when there is an opportunity to hunt for food on a larger scale. Dolphins are carnivores and have developed highly skilled cooperative techniques for hunting prey, similar to a pack of wolves hunting, but in three dimensions. Dolphins also devote a large amount of time to training their offspring to hunt and survive, and they are the only non-human mammals that exhibit strong evidence of vocal mimicry and physical imitation (Reiss et al, 1997).Although they live in superficially different ecosystems, dolphins and the great apes have been subject to fundamentally similar selective pressures, according to Marino, who co-authored the seminal study of vocal mimicry in dolphins. “Despite the seemingly disparate environmental pressures that would shape cetacean—the mammalian group including dolphins, whales and porpoises—and primate cognitive evolution, these drivers were actually extremely similar,” she said. “Both evolved complex levels of social interaction, and, in that respect, dolphins and primates evolved in, conceptually, very similar environments.”According to Marino, dolphin brain enlargement occurred only when they began to develop the use of echolocation to coordinate hunting and other activities. But other animals have developed echolocation without enlarging their brains. In the case of cetaceans and especially dolphins, Marino believes the key evolutionary driver was the incorporation of this technique into a complex system of social interaction. She argues that the enhanced cognitive and social interactive abilities of dolphins and great apes have allowed these species to develop rudimentary levels of morality and altruism.“Ongoing findings from studies of both primate and cetacean behaviour provide support for the conclusion that social complexity involves the evolution of morality,” Marino explained. “This is true in a number of ways. From an ultimate evolutionarily point of view, complex group living requires ways to regulate interactions among individuals in order to keep the group intact. Frans de Waal has provided abundant evidence for this argument in primates and I would contend the same is true of cetaceans. On a proximate level, much of the morality we see in primate and cetacean groups is underwritten by empathy, which is enabled by the kind of awareness of self and other that dolphins and primates—particularly great apes and humans—demonstrate.”Such behaviour might have evolved partly because altruism enhanced individual survival chances—providing that the cost was not too great. But, according to Antonio Damasio, Director of the Brain and Creativity Institute at the University of Southern California in Los Angeles, CA, USA, the key driver might have been that altruism enabled individuals to make ‘wiser'' decisions. Humans might be unique in the degree to which we apply ethics and morality to rational decision-making, but the presence of empathy in animals provides important clues about the neurological underpinnings of these abilities. In particular, research with animals might help to settle the long-standing argument about whether morality and altruism can be regarded as independent of the brain''s hardware, or whether morality is hard-wired into the brain and is a product of our neurological evolution.…humans commonly appear to balance rational and emotional factors when making judgements, creating the impression that there are distinct neural systems competing with each otherSome studies seem to suggest that the latter is true. For example, an experiment at the University of Zurich, Switzerland, in which subjects were asked to divide up a sum of money on a supposedly fair basis, found that the disruption of cognition altered the moral behaviour of the participants. In the so-called Ultimatum Game, one of the two participants—who does not know how much money is available—is required to make an offer to the other, who does know the size of the pot. If the second player does not accept, neither player receives anything, so in a sense it can be seen as a test of indignation versus greed. If the pot is big, the second player might decide to swallow his or her pride and accept it. The first player, however, might decide to make a generous offer in order to be sure it would be accepted. During the game, the Swiss researchers applied low-frequency transcranial magnetic stimulation to disrupt either the right or left dorsolateral prefrontal cortex of their test subjects. Disruption of the right side made them more susceptible to ‘immoral'' decisions as they were more willing to make offers that they judged to be unfair to their partners. Yet, they retained their ability to determine fairness. The researchers concluded that the right side of the prefrontal cortex has an implicit role in determining how to apply moral or ethical standards to information made available by cognitive processes (Sanfey et al, 2003).This suggests that morality is hard-wired and does not exist independently of the brain''s complex biochemistry, at least according to Damasio. “Emotions and feelings, as we know them, are related to our ‘wet'' biology, to our flesh,” he said. “Formally you can construct them in robotic artefacts but there is no reason to believe [that] they would be the same.”In this regard, Michael Koenigs, from the Department of Psychiatry at the University of Wisconsin–Madison, USA, pointed out that humans commonly appear to balance rational and emotional factors when making judgements, creating the impression that there are distinct neural systems competing with each other. “From a psychological standpoint, in the midst of a sticky moral dilemma it can certainly feel like your mind is being pulled in two different directions,” he said. “And in terms of the brain, it is very clear that certain areas are more concerned with emotion and affect, while other areas are more associated with ‘cold'' cognitive processes. Both systems play a role in determining morality, but at the neural level the relationship between the systems is more of an integration than a competition.”Until recently there was very little direct observation of these neurological processes at work. However, recent research based on functional magnetic resonance imaging has revealed that ‘true'' and ‘false'' statements activate different regions of the prefrontal cortex. The researchers found that people tend to use separate processes to resolve the distinctions between true and false statements, unless the answer is blindingly obvious (Marques et al, 2009). They concluded that people accept statements as true initially and confirm this merely by a call to memory. However, if the initial check suggests that the statement might be false, further reasoning is required to confirm the rejection. “The idea supported by this paper and others is that when the statement to verify is true—and by default we assume [that] it is—the task is to find if we have or recognize that information in our memory,” explained Frederico Marques, one of the authors of the study from the University of Lisbon, Portugal. “When we do not find that information, or if we have doubts, we further process the information, more like problem solving.”Animals that are capable of MSR also possess primitive abilities to assess truth or falsehood. Magpies, for example, have to decide whether a particular individual can be trusted to not steal food. Of course, more research is needed to provide further insight into the neurological processes involved in such assessments and to illuminate the evolutionary history of such a skill. What is established, however, is that the roots of complex social behaviour and the capacity for abstract thought—as well as ethical judgment, perhaps—can be found predominantly in the more advanced warm-blooded and social vertebrates. The capacity for morality is perhaps not, after all, uniquely human.  相似文献   

3.
4.
Suran M 《EMBO reports》2011,12(1):27-30
Few environmental disasters are as indicting of humanity as major oil spills. Yet Nature has sometimes shown a remarkable ability to clean up the oil on its own.In late April 2010, the BP-owned semi-submersible oilrig known as Deepwater Horizon exploded just off the coast of Louisiana. Over the following 84 days, the well from which it had been pumping spewed 4.4 million barrels of crude oil into the Gulf of Mexico, according to the latest independent report (Crone & Tolstoy, 2010). In August, the US Government released an even grimmer estimate: according to the federal Flow Rate Technical Group, up to 4.9 million barrels were excreted during the course of the disaster. Whatever the actual figure, images from NASA show that around 184.8 million gallons of oil have darkened the waters just 80 km from the Louisiana coast, where the Mississippi Delta harbours marshlands and an abundance of biodiversity (NASA Jet Propulsion Laboratory, 2010; Fig 1).…the Deepwater incident is not the first time that a massive oil spill has devastated marine and terrestrial ecosystems, nor is it likely to be the lastOpen in a separate windowFigure 1Images of the Deepwater Horizon oil slick in the Gulf of Mexico. These images were recorded by NASA''s Terra spacecraft in May 2010. The image dimensions are 346 × 258 kilometres and North is toward the top. In the upper panel, the oil appears bright turquoise owing to the combination of images that were used from the Multi-angle Imaging SpectroRadiometer (MISR) aboard the craft. The Mississippi Delta, which harbors marshlands and an abundance of biodiversity, is visible in the top left of the image. The white arrow points to a plume of smoke and the red cross-hairs indicate the former location of the drilling rig. The lower two panels are enlargements of the smoke plume, which is probably the result of controlled burning of collected oil on the surface.© NASA/GSFC/LaRC/JPL, MISR TeamThe resulting environmental and economic situation in the Gulf is undoubtedly dreadful—the shrimp-fishing industry has been badly hit, for example. Yet the Deepwater incident is not the first time that a massive oil spill has devastated marine and terrestrial ecosystems, nor is it likely to be the last. In fact, the US National Oceanic and Atmospheric Association (NOAA) deals with approximately 300 oil spills per year and the Deepwater catastrophe—despite its extent and the enormous amount of oil released—might not be as terrible for the environment as was originally feared. Jacqueline Michel, a geochemist who has worked on almost every major oil spill since the 1970s and who is a member of NOAA''s scientific support team for the Gulf spill, commented that “the marshes and grass are showing some of the highest progresses of [oil] degradation because of the wetness.” This rapid degradation is partly due to an increased number of oil-consuming microbes in the water, whose population growth in response to the spill is cleaning things up at a relatively fast pace (Hazen et al, 2010).It therefore seems that, however bad the damage, Nature''s capacity to repair itself might prevent the unmitigated disaster that many feared on first sight of the Deepwater spill. As the late social satirist George Carlin (1937–2008) once put it: “The planet will shake us off like a bad case of fleas, a surface nuisance[.] The planet will be here for a long, long—LONG—time after we''re gone, and it will heal itself, it will cleanse itself, because that''s what it does, it''s a self-correcting system.”Michel believes that there are times when it is best to leave nature alone. In such cases the oil will degrade naturally by processes as simple as exposure to sunlight—which can break it down—or exposure to the air—which evaporates many of its components. “There have been spills where there was no response because we knew we were going to cause more harm,” Michel said. “Although we''re going to remove heavier layers of surface oil [in this case], the decision has been made to leave oil on the beach because we believe it will degrade in a timescale of months […] through natural processing.”To predict the rate of general environmental recovery, Michel said one should examine the area''s fauna, the progress of which can be very variable. Species have different recovery rates and although it takes only weeks or months for tiny organisms such as plankton to bounce back to their normal population density, it can take years for larger species such as the endangered sea turtle to recover.…however bad the damage, Nature''s capacity to repair itself might prevent the unmitigated disaster that many feared on first sight…Kimberly Gray, professor of environmental chemistry and toxicology at Northwestern University (Evanston, IL, USA), is most concerned about the oil damaging the bottom of the food chain. “Small hits at the bottom are amplified as you move up,” she explained. “The most chronic effects will be at the base of the food chain […] we may see lingering effects with the shrimp population, which in time may crash. With Deepwater, it''s sort of like the straw that broke the shrimp''s back.”Wetlands in particular are a crucial component of the natural recovery of ecosystems, as they provide flora that are crucial to the diets of many organisms. They also provide nesting grounds and protective areas where fish and other animals find refuge from predation. “Wetlands and marsh systems are Nature''s kidneys and they''ve been damaged,” Gray said. The problem is exacerbated because the Louisiana wetlands are already stressed in the aftermath of Hurricane Katrina, which devastated the Gulf coast in August 2005, and because of constant human activity and environmental damage. As Gray commented, “Nature has a very powerful capacity to repair itself, but what''s happening in the modern day is assault after assault.”Ron Thom, a marine ecologist at Pacific Northwest National Laboratory—a US government-funded research facility (Richland, WA, USA)—has done important research on coastal ecosystems. He believes that such habitats are able to decontaminate themselves to a limited degree because of evolution. “[Coastal-related ecosystems are] pretty resilient because they''ve been around a long time and know how to survive,” he said.As a result, wetlands can decontaminate themselves of pollutants such as oil, nitrate and phosphate. However, encountering large amounts of pollutants in a short period of time can overwhelm the healing process, or even stop it altogether. “We did some experiments here in the early 90s looking at the ability for salt marshes to break down oil,” Thom said. “When we put too much oil on the surface of the marsh it killed everything.” He explained that the oil also destroyed the sediment–soil column, where plant roots are located. Eventually, the roots disintegrated and the entire soil core fell apart. According to Thom, the Louisiana marshes were weakened by sediment and nutrient starvation, which suggests that the Deepwater spill destroyed below-ground material in some locations. “You can alter a place through a disturbance so drastic that it never recovers to what it used to be because things have changed so much,” he said.“Nature has a very powerful capacity to repair itself, but what''s happening in the modern day is assault after assault”Michael Blum, a coastal marsh ecologist at Tulane University in New Orleans, said that it is hard to determine the long-term effects of the oil because little is known about the relevant ecotoxicology—the effect of toxic agents on ecosystems. He has conducted extensive research on how coastal marsh plants respond to stress: some marshes might be highly susceptible to oil whereas others could have evolved to deal with natural oil seepage to metabolize hydrocarbons. In the former, marshes might perish after drastic exposure to oil leading to major shifts in plant communities. In the latter case, the process of coping with oil could involve the uptake of pollutants in the oil—known as polycyclic aromatic hydrocarbons (PAHs)—and their reintroduction into the environment. “If plants are growing in the polluted sediments and tapping into those contaminated sources, they can pull that material out of the soil and put it back into the water column or back into the leaf tissue that is a food source for other organisms,” Blum explained.In addition to understanding the responses of various flora, scientists also need to know how the presence of oil in an ecosystem affects the fauna. One model that is used to predict the effects of oil on vertebrates is the killifish; a group of minnows that thrive in the waters of Virginia''s Elizabeth River, where they are continuously exposed to PAHs deposited in the water by a creosote factory (Meyer & Di Giulio, 2003). “The killifish have evolved tolerance to the exposure of PAHs over chronic, long-term conditions,” Blum said. “This suggests that something similar may occur elsewhere, including in Gulf Coast marshes exposed to oil.”Although Michel is optimistic about the potential for environmental recovery, she pointed out that no two spills are the same. “There are lot of things we don''t know, we never had a spill that had surface release for so long at this water depth,” she said. Nevertheless, to better predict the long-term effects, scientists have turned to data from similar incidents.In 1989, the petroleum tanker Exxon Valdez struck Bligh Reef off the coast of Prince William Sound in Alaska and poured a minimum of 11 million gallons of oil into the water—enough to fill 125 Olympic-sized swimming pools. Senior scientist at NOAA, Stanley Rice of Juno, Alaska, studies the long-term effects of the spill and the resulting oil-related issues in Prince William Sound. Rice has worked with the spill since day 3 and, 20 years later, he is seeing major progress. “I never want to give the impression that we had this devastating oil spill in 1989 and it''s still devastating,” he said. “We have pockets of a few species where lingering oil hurts their survival, but in terms of looking at the Sound in its entirety […] it''s done a lot of recovery in 20 years.”…little is known about the relevant ecotoxicology—the effect of toxic agents on ecosystemsDespite the progress, Rice is still concerned about one group of otters. The cold temperature of the water in the Sound—rarely above 5 °C—slows the disintegration of the oil and, every so often, the otters come in contact with a lingering pocket. When they are searching for food, for example, the otters often dig into pits containing oil and become contaminated, which damages their ability to maintain body temperature. As a result, they cannot catch as much food and starve because they need to consume the equivalent of 25% of their body weight every day (Rice, 2009).“Common colds or worse, pneumonia, are extremely debilitating to an animal that has to work literally 365 days a year, almost 8 to 12 hours a day,” Rice explained. “If they don''t eat enough to sustain themselves, they die of hyperthermia.” Nevertheless, in just the last two years, Rice has finally seen the otter population rebound.Unlike the otters, one pod of orca whales has not been so lucky. Since it no longer has any reproductive females, the pod will eventually become extinct. However, as it dies out, orca prey such as seals and otters will have a better chance of reproducing. “There are always some winners and losers in these types of events,” Rice said. “Nature is never static.”The only ‘loser'' that Rice is concerned about at the moment is the herring, as many of their populations have remained damaged for the past 20 years. “Herring are critical to the ecosystem,” he said. “[They are] a base diet for many species […] Prince William Sound isn''t fully recovered until the herring recover.”North America is not alone in dealing with oil-spill disasters—Europe has had plenty of experience too. One of the worst spills occurred when the oil tanker Prestige leaked around 20 million gallons of oil into the waters of the Galacian coast in Northern Spain in 2002. This also affected the coastline of France and is considered Spain''s worst ecological disaster.“The impacts of the Prestige were indeed severe in comparison with other spills around the world,” said attorney Xabier Ezeizabarrena, who represented the Fishermen Guilds of Gipuzkoa in a lawsuit relating to the spill. “Some incidents aren''t even reported, but in the European Union the ratio is at least one oil spill every six months.”For disasters involving oil, oceanographic data to monitor and predict the movement of the spill is essentialIn Ezeizabarrena''s estimation, Spanish officials did not respond appropriately to the leak. The government was denounced for towing the shipwreck further out into the Atlantic Ocean—where it eventually sank—rather than to a port. “There was a huge lack of measures and tools from the Spanish government in particular,” Ezeizabarrena said. “[However], there was a huge response from civil society […] to work together [on restoration efforts].”Ionan Marigómez, professor of cellular biology at the University of the Basque Country, Spain, was the principal investigator on a federal coastal-surveillance programme named Orbankosta. He recorded the effects of the oil on the Basque coast and was a member of the Basque government''s technical advisory commission for the response to the Prestige spill. He was also chair of the government''s scientific committee. “Unfortunately, most of us scientists were not prepared to answer questions related to the biological impact of restoration strategies,” Marigómez said. “We lacked data to support our advice since continued monitoring is not conducted in the area […] and most of us had developed our scientific activity with too much focus on each one''s particular area when the problem needed a holistic view.”…the world consumes approximately 31 billion barrels of oil per year; more than 700 times the amount that leaked during the Deepwater spillFor disasters involving oil, oceanographic data to monitor and predict the movement of the spill is essential. Clean-up efforts were initially encouraged in Spain, but data provided by coastal-inspection programmes such as Orbankosta informed the decision to not clean up the Basque shoreline, allowing the remaining oil debris to disintegrate naturally. In fact, the cleaning activity that took place in Galicia only extended the oil pollution to the supralittoral zone—the area of the beach splashed by the high tide, rather than submerged by it—as well as to local soil deposits. On the Basque coast, restoration efforts were limited to regions where people were at risk, such as rocky areas near beaches and marinas.Eight years later, Galicia still suffers from the after-effects of the Prestige disaster. Thick subsurface layers of grey sand are found on beaches, sometimes under sand that seems to be uncontaminated. In Corme-Laxe Bay and Cies Island in Galicia, PAH levels have decreased. Studies have confirmed, however, that organisms exposed to the area''s sediments had accumulated PAHs in their bodies. Marigómez, for example, studied the long-term effects of the spill on mussels. Depending on their location, PAH levels decreased in the sampled mussel tissue between one and two years after the spill. However, later research showed that certain sites suffered later increases in the level of PAHs, due to the remobilization of oil residues (Cajaraville et al, 2006). Indeed, many populations of macroinvertebrate species—which are the keystones of coastal ecosystems—became extinct at the most-affected locations, although neighbouring populations recolonized these areas. The evidence suggests that only time will tell what will happen to the Galicia ecosystem. The same goes for oil-polluted environments around the world.The concern whether nature can recover from oil spills might seem extreme, considering that oil is a natural product derived from the earth. But too much of anything can be harmful and oil would remain locked underground without human efforts to extract it. “As from Paracelsus'' aphorism, the dose makes the poison,” Marigómez said.According to the US Energy Information Administration, the world consumes approximately 31 billion barrels of oil per year; more than 700 times the amount that leaked during the Deepwater spill. Humanity continues, in the words of some US politicians, to “drill, baby, drill!” On 12 October 2010, less than a year after the Gulf Coast disaster, US President Barack Obama declared that he was lifting the ban on deepwater drilling. It appears that George Carlin got it right again when he satirized a famous American anthem: “America, America, man sheds his waste on thee, and hides the pines with billboard signs from sea to oily sea!”  相似文献   

5.
Wolinsky H 《EMBO reports》2010,11(11):830-833
Sympatric speciation—the rise of new species in the absence of geographical barriers—remains a puzzle for evolutionary biologists. Though the evidence for sympatric speciation itself is mounting, an underlying genetic explanation remains elusive.For centuries, the greatest puzzle in biology was how to account for the sheer variety of life. In his 1859 landmark book, On the Origin of Species, Charles Darwin (1809–1882) finally supplied an answer: his grand theory of evolution explained how the process of natural selection, acting on the substrate of genetic mutations, could gradually produce new organisms that are better adapted to their environment. It is easy to see how adaptation to a given environment can differentiate organisms that are geographically separated; different environmental conditions exert different selective pressures on organisms and, over time, the selection of mutations creates different species—a process that is known as allopatric speciation.It is more difficult to explain how new and different species can arise within the same environment. Although Darwin never used the term sympatric speciation for this process, he did describe the formation of new species in the absence of geographical separation. “I can bring a considerable catalogue of facts,” he argued, “showing that within the same area, varieties of the same animal can long remain distinct, from haunting different stations, from breeding at slightly different seasons, or from varieties of the same kind preferring to pair together” (Darwin, 1859).It is more difficult to explain how new and different species can arise within the same environmentIn the 1920s and 1930s, however, allopatric speciation and the role of geographical isolation became the focus of speciation research. Among those leading the charge was Ernst Mayr (1904–2005), a young evolutionary biologist, who would go on to influence generations of biologists with his later work in the field. William Baker, head of palm research at the Royal Botanic Gardens, Kew in Richmond, UK, described Mayr as “one of the key figures to crush sympatric speciation.” Frank Sulloway, a Darwin Scholar at the Institute of Personality and Social Research at the University of California, Berkeley, USA, similarly asserted that Mayr''s scepticism about sympatry was central to his career.The debate about sympatric and allopatric speciation has livened up since Mayr''s death…Since Mayr''s death in 2005, however, several publications have challenged the notion that sympatric speciation is a rare exception to the rule of allopatry. These papers describe examples of both plants and animals that have undergone speciation in the same location, with no apparent geographical barriers to explain their separation. In these instances, a single ancestral population has diverged to the extent that the two new species cannot produce viable offspring, despite the fact that their ranges overlap. The debate about sympatric and allopatric speciation has livened up since Mayr''s death, as Mayr''s influence over the field has waned and as new tools and technologies in molecular biology have become available.Sulloway, who studied with Mayr at Harvard University, in the late 1960s and early 1970s, notes that Mayr''s background in natural history and years of fieldwork in New Guinea and the Solomon Islands contributed to his perception that the bulk of the data supported allopatry. “Ernst''s early career was in many ways built around that argument. It wasn''t the only important idea he had, but he was one of the strong proponents of it. When an intellectual stance exists where most people seem to have gotten it wrong, there is a tendency to sort of lay down the law,” Sulloway said.Sulloway also explained that Mayr “felt that botanists had basically led Darwin astray because there is so much evidence of polyploidy in plants and Darwin turned in large part to the study of botany and geographical distribution in drawing evidence in The Origin.” Indeed, polyploidization is common in plants and can lead to ‘instantaneous'' speciation without geographical barriers.In February 2006, the journal Nature simultaneously published two papers that described sympatric speciation in animals and plants, reopening the debate. Axel Meyer, a zoologist and evolutionary biologist at the University of Konstanz, Germany, demonstrated with his colleagues that sympatric speciation has occurred in cichlid fish in Lake Apoyo, Nicaragua (Barluenga et al, 2006). The researchers claimed that the ancestral fish only seeded the crater lake once; from this, new species have evolved that are distinct and reproductively isolated. Meyer''s paper was broadly supported, even by critics of sympatric speciation, perhaps because Mayr himself endorsed sympatric speciation among the cichlids in his 2001 book What Evolution Is. “[Mayr] told me that in the case of our crater lake cichlids, the onus of showing that it''s not sympatric speciation lies with the people who strongly believe in only allopatric speciation,” Meyer said.…several scientists involved in the debate think that molecular biology could help to eventually resolve the issueThe other paper in Nature—by Vincent Savolainen, a molecular systematist at Imperial College, London, UK, and colleagues—described the sympatric speciation of Howea palms on Lord Howe Island (Fig 1), a minute Pacific island paradise (Savolainen et al, 2006a). Savolainen''s research had originally focused on plant diversity in the gesneriad family—the best known example of which is the African violet—while he was in Brazil for the Geneva Botanical Garden, Switzerland. However, he realized that he would never be able prove the occurrence of sympatry within a continent. “It might happen on a continent,” he explained, “but people will always argue that maybe they were separated and got together after. […] I had to go to an isolated piece of the world and that''s why I started to look at islands.”Open in a separate windowFigure 1Lord Howe Island. Photo: Ian Hutton.He eventually heard about Lord Howe Island, which is situated just off the east coast of Australia, has an area of 56 km2 and is known for its abundance of endemic palms (Sidebar A). The palms, Savolainen said, were an ideal focus for sympatric research: “Palms are not the most diverse group of plants in the world, so we could make a phylogeny of all the related species of palms in the Indian Ocean, southeast Asia and so on.”…the next challenges will be to determine which genes are responsible for speciation, and whether sympatric speciation is common

Sidebar A | Research in paradise

Alexander Papadopulos is no Tarzan of the Apes, but he has spent a couple months over the past two years aloft in palm trees hugging rugged mountainsides on Lord Howe Island, a Pacific island paradise and UNESCO World Heritage site.Papadopulos—who is finishing his doctorate at Imperial College London, UK—said the views are breathtaking, but the work is hard and a bit treacherous as he moves from branch to branch. “At times, it can be quite hairy. Often you''re looking over a 600-, 700-metre drop without a huge amount to hold onto,” he said. “There''s such dense vegetation on most of the steep parts of the island. You''re actually climbing between trees. There are times when you''re completely unsupported.”Papadopulos typically spends around 10 hours a day in the field, carrying a backpack and utility belt with a digital camera, a trowel to collect soil samples, a first-aid kit, a field notebook, food and water, specimen bags, tags to label specimens, a GPS device and more. After several days in the field, he spends a day working in a well-equipped field lab and sleeping in the quarters that were built by the Lord Howe governing board to accommodate the scientists who visit the island on various projects. Papadopulos is studying Lord Howe''s flora, which includes more than 200 plant species, about half of which are indigenous.Vincent Savolainen said it takes a lot of planning to get materials to Lord Howe: the two-hour flight from Sydney is on a small plane, with only about a dozen passengers on board and limited space for equipment. Extra gear—from gardening equipment to silica gel and wood for boxes in which to dry wet specimens—arrives via other flights or by boat, to serve the needs of the various scientists on the team, including botanists, evolutionary biologists and ecologists.Savolainen praised the well-stocked researcher station for visiting scientists. It is run by the island board and situated near the palm nursery. It includes one room for the lab and another with bunks. “There is electricity and even email,” he said. Papadoupulos said only in the past year has the internet service been adequate to accommodate video calls back home.Ian Hutton, a Lord Howe-based naturalist and author, who has lived on the island since 1980, said the island authorities set limits on not only the number of residents—350—but also the number of visitors at one time—400—as well as banning cats, to protect birds such as the flightless wood hen. He praised the Imperial/Kew group: “They''re world leaders in their field. And they''re what I call ‘Gentlemen Botanists''. They''re very nice people, they engage the locals here. Sometimes researchers might come here, and they''re just interested in what they''re doing and they don''t want to share what they''re doing. Not so with these people. Savolainen said his research helps the locals: “The genetics that we do on the island are not only useful to understand big questions about evolution, but we also always provide feedback to help in its conservation efforts.”Yet, in Savolainen''s opinion, Mayr''s influential views made it difficult to obtain research funding. “Mayr was a powerful figure and he dismissed sympatric speciation in textbooks. People were not too keen to put money on this,” Savolainen explained. Eventually, the Leverhulme Trust (London, UK) gave Savolainen and Baker £70,000 between 2003–2005 to get the research moving. “It was enough to do the basic genetics and to send a research assistant for six months to the island to do a lot of natural history work,” Savolainen said. Once the initial results had been processed, the project received a further £337,000 from the British Natural Environment Research Council in 2008, and €2.5 million from the European Research Council in 2009.From the data collected on Lord Howe Island, Savolainen and his team constructed a dated phylogenetic tree showing that the two endemic species of the palm Howea (Arecaceae; Fig 2) are sister taxa. From their tree, the researchers were able to establish that the two species—one with a thatch of leaves and one with curly leaves—diverged long after the island was formed 6.9 million years ago. Even where they are found in close proximity, the two species cannot interbreed as they flower at different times.Open in a separate windowFigure 2The two species of Howea palm. (A) Howea fosteriana (Kentia palm). (B) Howea belmoreana. Photos: William Baker, Royal Botanical Gardens, Kew, Richmond, UK.According to the researchers, the palm speciation probably occurred owing to the different soil types in which the plants grow. Baker explained that there are two soil types on Lord Howe—the older volcanic soil and the younger calcareous soils. The Kentia palm grows in both, whereas the curly variety is restricted to the volcanic soil. These soil types are closely intercalated—fingers and lenses of calcareous soils intrude into the volcanic soils in lowland Lord Howe Island. “You can step over a geological boundary and the palms in the forest can change completely, but they remain extremely close to each other,” Baker said. “What''s more, the palms are wind-pollinated, producing vast amounts of pollen that blows all over the place during the flowering season—people even get pollen allergies there because there is so much of the stuff.” According to Savolainen, that the two species have different flowering times is a “way of having isolation so that they don''t reproduce with each other […] this is a mechanism that evolved to allow other species to diverge in situ on a few square kilometres.”According to Baker, the absence of a causative link has not been demonstrated between the different soils and the altered flowering times, “but we have suggested that at the time of speciation, perhaps when calcareous soils first appeared, an environmental effect may have altered the flowering time of palms colonising the new soil, potentially causing non-random mating and kicking off speciation. This is just a hypothesis—we need to do a lot more fieldwork to get to the bottom of this,” he said. What is clear is that this is not allopatric speciation, as “the micro-scale differentiation in geology and soil type cannot create geographical isolation”, said Baker.…although molecular data will add to the debate, it will not settle it aloneThe results of the palm research caused something of a splash in evolutionary biology, although the study was not without its critics. Tod Stuessy, Chair of the Department of Systematic and Evolutionary Botany at the University of Vienna, Austria, has dealt with similar issues of divergence on Chile''s Juan Fernández Islands—also known as the Robinson Crusoe Islands—in the South Pacific. From his research, he points out that on old islands, large ecological areas that once separated species—and caused allopatric speciation—could have since disappeared, diluting the argument for sympatry. “There are a lot of cases [in the Juan Fernández Islands] where you have closely related species occurring in the same place on an island, even in the same valley. We never considered that they had sympatric origins because we were always impressed by how much the island had been modified through time,” Stuessy said. “What [the Lord Howe researchers] really didn''t consider was that Lord Howe Island could have changed a lot over time since the origins of the species in question.” It has also been argued that one of the palm species on Lord Howe Island might have evolved allopatrically on a now-sunken island in the same oceanic region.In their response to a letter from Stuessy, Savolainen and colleagues argued that erosion on the island has been mainly coastal and equal from all sides. “Consequently, Quaternary calcarenite deposits, which created divergent ecological selection pressures conducive to Howea species divergence, have formed evenly around the island; these are so closely intercalated with volcanic rocks that allopatric speciation due to ecogeographic isolation, as Stuessy proposes, is unrealistic” (Savolainen et al, 2006b). Their rebuttal has found support in the field. Evolutionary biologist Loren Rieseberg at the University of British Columbia in Vancouver, Canada, said: “Basically, you have two sister species found on a very small island in the middle of the ocean. It''s hard to see how one could argue anything other than they evolved there. To me, it would be hard to come up with a better case.”Whatever the reality, several scientists involved in the debate think that molecular biology could help to eventually resolve the issue. Savolainen said that the next challenges will be to determine which genes are responsible for speciation, and whether sympatric speciation is common. New sequencing techniques should enable the team to obtain a complete genomic sequence for the palms. Savolainen said that next-generation sequencing is “a total revolution.” By using sequencing, he explained that the team, “want to basically dissect exactly what genes are involved and what has happened […] Is it very special on Lord Howe and for this palm, or is [sympatric speciation] a more general phenomenon? This is a big question now. I think now we''ve found places like Lord Howe and [have] tools like the next-gen sequencing, we can actually get the answer.”Determining whether sympatric speciation occurs in animal species will prove equally challenging, according to Meyer. His own lab, among others, is already looking for ‘speciation genes'', but this remains a tricky challenge. “Genetic models […] argue that two traits (one for ecological specialisation and another for mate choice, based on those ecological differences) need to become tightly linked on one chromosome (so that they don''t get separated, often by segregation or crossing over). The problem is that the genetic basis for most ecologically relevant traits are not known, so it would be very hard to look for them,” Meyer explained. “But, that is about to change […] because of next-generation sequencing and genomics more generally.”Many researchers who knew Mayr personally think he would have enjoyed the challenge to his viewsOthers are more cautious. “In some situations, such as on isolated oceanic islands, or in crater lakes, molecular phylogenetic information can provide strong evidence of sympatric speciation. It also is possible, in theory, to use molecular data to estimate the timing of gene flow, which could help settle the debate,” Rieseberg said. However, he cautioned that although molecular data will add to the debate, it will not settle it alone. “We will still need information from historical biogeography, natural history, phylogeny, and theory, etc. to move things forward.”Many researchers who knew Mayr personally think he would have enjoyed the challenge to his views. “I can only imagine that it would''ve been great fun to engage directly with him [on sympatry on Lord Howe],” Baker said. “It''s a shame that he wasn''t alive to comment on [our paper].” In fact, Mayr was not really as opposed to sympatric speciation as some think. “If one is of the opinion that Mayr opposed all forms of sympatric speciation, well then this looks like a big swing back the other way,” Sulloway commented. “But if one reads Mayr carefully, one sees that he was actually interested in potential exceptions and, as best he could, chronicled which ones he thought were the best candidates.”Mayr''s opinions aside, many biologists today have stronger feelings against sympatric speciation than he did himself in his later years, Meyer added. “I think that Ernst was more open to the idea of sympatric speciation later in his life. He got ‘softer'' on this during the last two of his ten decades of life that I knew him. I was close to him personally and I think that he was much less dogmatic than he is often made out to be […] So, I don''t think that he is spinning in his grave.” Mayr once told Sulloway that he liked to take strong stances, precisely so that other researchers would be motivated to try to prove him wrong. “If they eventually succeeded in doing so, Mayr felt that science was all the better for it.”? Open in a separate windowAlex Papadopulos and Ian Hutton doing fieldwork on a very precarious ridge on top of Mt. Gower. Photo: William Baker, Royal Botanical Gardens, Kew, Richmond, UK.  相似文献   

6.
The psycho gene     
Philip Hunter 《EMBO reports》2010,11(9):667-669
While the idea of a ‘criminal gene'' is nonsense, there is growing evidence that some psychopathic behaviour might indeed be grounded in genesThe notion that genes play an important role in many diseases has been widely accepted, but many find it much harder to acknowledge a similar link with particular behaviour or even predisposition to crime. Partly for this reason, the study of behavioural genetics remains a controversial topic, with disagreement not just over the science itself, but even more so about the therapeutic, societal and legal implications.Too much might have been made too soon of early findings that made correlations between alleles of certain genes and tendencies to antisocial or criminal behaviour. Indeed, most researchers in the field were appalled by the decision of an Italian appeal court in 2009 to cut the sentence of a convicted murderer by one year on the grounds that he had a version of the MAOA gene, which has been linked to aggression and violence (Feresin, 2009). There is equal dismay over some US courts that went the other way and accepted genetic factors as evidence for the prosecution, leading to higher sentences on the basis that people with particular alleles cannot be cured and will remain a risk to society for longer.“Taking genetic factors into account when sentencing is plain stupid, unless we are talking about something like Down''s syndrome or some other syndrome that drastically reduces intelligence and executive functioning,” insisted Anthony Walsh from the Criminal Justice Department at Boise State University in Idaho, USA. “This is the kind of “genetic determinism” that liberals have worried themselves silly over. They just have to take one or two neuroscience and genetic classes to dispense with their ‘my genes/neurons'' made me do it. Nothing relieves one of the obligation to behave civilized.”Nonetheless, the case against specific alleles has been accumulating, notably for the low-expression variant of MAOA, known as MAOA-L, which has been linked in various studies with increased risk of violent and aggressive behaviour. The gene MAOA encodes monoamine oxidase A, an enzyme that degrades amine neurotransmitters, such as dopamine, noradrenalin and serotonin. A rare genetic disorder caused by an MAOA mutation leads to MAOA deficiency and in turn an excess of monoamine transmitters, causing excessive impulsive behaviour including hypersexuality, sleep disorder and extreme mood swings as well as a tendency to violence, which is known as Brunner syndrome.…the study of behavioural genetics remains a controversial topic, with disagreement not just over the science itself, but even more so about the therapeutic, societal and legal implicationsBut while Brunner''s syndrome is rare, having only been identified in five males of one extended family, the MAOA-L variant is extremely common and occurs in about 40% of the population. Clearly, most of these people are peaceable and have never committed a crime, and yet a study involving researchers from Austria, Italy and the USA—headed by Andreas Meyer-Lindenberg, Director of the Central Institute of Mental Health in Mannheim, Germany—has discovered that at least males with this variant had neurobiological structural factors that would predispose them to violence (Meyer et al, 2006).Using structural MRI scanning, the study identified that people with MAOA-L were more likely to have a smaller limbic system—the hippocampus, amygdala, anterior thalamic nuclei and limbic cortex—which participates in emotion, behaviour and long-term memory. The team then applied functional MRI, which measures changes in blood flow, and discovered that the MAOA-L group also showed hyperresponsiveness of the amygdala during tasks such as copying facial expressions. The amygdala is associated with emotional processing and the MAOA-L group was less able to inhibit strong emotional impulses.But some trigger is still needed to tip MAOA-L people towards violence. An earlier study suggested that this trigger could be persistent maltreatment during childhood (Caspi et al, 2002). At first sight, this suggests that nearly half the human population are predisposed to violence given these triggers, but the situation is not quite that bad—it is merely nearly half of men. Women are protected in two ways: the MAOA gene is linked to the X chromosome so that women with the MAOA-L variety on one chromosome usually have a normal allele on the other; and there is circumstantial evidence that women are also protected by other genes from being disposed to violence.In any case, caution is needed to interpret the findings of Mayer-Lindenberg''s group about the MAOA-L allele, according to Ahmad Hariri, Investigator at the Institute for Genome Sciences & Policy at Duke University (Durham, NC, USA). “This is a significant basic science finding linking genes to brain to behaviour,” he said. “But it is not a significant clinical finding in and of itself. Only in as much as this very, very, very subtle bias in the brain tips the balance toward an aggressive response to provocation is this finding even remotely clinically relevant.” In fact, as Meyer-Lindenberg himself has commented, the MAOA-L allele is just one of several genes—most of which are still not identified—that increase risk of violent or antisocial behaviour.But the whole story takes a rather different turn in the case of psychopathy, which is now widely regarded as a congenital state characterized by lack of empathy or moral compass and defined at least partly by genes, in contrast to other forms of sociopathy or antisocial personality disorder (APD), in which environmental factors make a major contribution (Fontaine & Viding, 2008).“Taking genetic factors into account when sentencing is plain stupid…”“…it is useful to think of psychopathy as mainly the product of genes and sociopathy as more subject to environmental influences”“Psychopathy does seem to be heritable, and appears to have its basis at least in part in “biological” factors linked to basic emotional systems, so that the mature psychopath never develops a complete set of pro-social emotions like empathy, guilt, and the ability to truly care about and for others,” said Richard Wiebe, who specializes in the link between psychology and criminology at Fitchburg State College in Fitchburg, MA, USA. Wiebe added though that the heritability of underlying genetic factors had yet to be conclusively established. “In other words, we know that the dependent variable, that is psychopathy, is heritable, but not enough about its causes to say that they are heritable. Nevertheless it is useful to think of psychopathy as mainly the product of genes and sociopathy as more subject to environmental influences.”Environmental factors do play a part in the behaviour of psychopaths, but in a different way than in other people who develop antisocial tendencies. The condition is more common than was once thought and affects about 0.6% of the population, according to a recent study conducted in the UK (Coid et al, 2009). Obviously, psychopathy does not always lead to crime or extreme violent behaviour; indeed its occurrence in the population used to be significantly underestimated because it was diagnosed only in people who had already shown extreme behaviour when many psychopaths do not.As there is no genetic or clinical test as yet, psychopathy is still diagnosed in terms of behaviour, but taking account of various factors in combination. Robert Hare, who led the UK study and is now at the Department of Psychology of the University of British Columbia in Vancouver, Canada, has designed a test known as the ‘Psychopathy Checklist—Revised'' of about 20 symptoms that he uses to diagnose psychopathy. These include pathological lying, superficial charm, lack of empathy and guilt, proneness to boredom and sexual promiscuity.Although it is not part of the Hare checklist, psychopaths can also be detected by their lack of a “startle reflex”, which means failure of their nervous system to respond to images or events that frighten or shock other people, such as pictures of a decapitated corpse. These tests work just as well for psychopaths who have never indulged in violence and apparently lead normal lives. They can also be used to identify psychopathy in children, who exhibit the same symptoms, in particular pathological lying, lack of empathy, tendency to violence, and lack of startle reflex—in fact, several studies have found evidence of inherited psychopathy in quite young children (Viding et al, 2005).It also appears that psychopathy is more common in men than women. This supports the theory that psychopathy might be an adaptive personality trait that gives men a reproductive advantage through greater tendency and ability to form numerous relationships and so have more children. This is unproven, but it is certainly true that male psychopaths tend to form large numbers of short-term relationships and can have an almost seductive charm.However, the trait would lose its advantage if it became too common in the population. A particular trait tends only to be advantageous in certain environmental conditions as was pointed out in the context of psychopathy by Essi Viding, Co-Director of the Developmental Risk and Resilience Unit at the Department of Psychology at University College London, UK. “I think that the simple game of evolution is to ensure survival of the species under different environmental conditions,” she said. “In some conditions it may be adaptive to be anxious and cooperative, in other conditions it may be good to exploit and be antisocial. This of course is effectively contrasting alleles that have very different effects. Hence, the same allele may serve an individual very well (and in a socially acceptable manner) in one situation, but not in another.”…psychopathy might be an adaptive personality trait that gives men a reproductive advantage through greater tendency and ability to form numerous relationships and so have more childrenThis leads back to the observation that psychopathy seems to be more common in men than women, which could have two possible explanations. First, it might be true at the genetic and neurological level, in particular if some of the relevant genes are linked to the X chromosome. Yet, this is speculative as few genes have been identified that contribute specifically to psychopathy, with most of the evidence for its heritability being statistical. There is the case of the X-linked MAOA gene, but that has only been associated with general antisocial tendencies.…irrespective of where future research leads, genes should not influence sentencing decisions one way or the other because they can never be deemed responsible for behaviourThere is in any case an alternative explanation for the apparent gender difference in psychopathic prevalence. Alice Jones, specialist in childhood and adolescent psychopathy and antisocial behaviour at Goldsmiths College, University of London, UK, suggests that the condition could be much more common among women than studies suggest. It might be that women will, in many cases, fail to register on the Hare Psychopathy Checklist—Revised because the more extreme traits are cushioned by other female factors. “There is some evidence to support this idea,” said Jones, citing work by Randy Salekin at the University of Alabama, in the USA (Salekin et al, 1997) who found that just as many women as men pass the Hare test in terms of their lack of empathy, but not on the more violent and impulsive criteria. “So, while the interpersonal aspects of psychopathy seem to be present and similar in males and females, the behavioural aspects of psychopathy are very much male-heavy,” said Jones.This comes back to the question of treatment and sentencing. Viding argues that irrespective of where future research leads, genes should not influence sentencing decisions one way or the other because they can never be deemed responsible for behaviour. “Any gene alone will be neither necessary, nor sufficient to predispose someone to high levels of psychopathic traits and as such, the responsibility for choosing to offend still resides with an individual,” she said. “Most ‘risk genes'' are common in the population and yet do not cause the majority of the individuals carrying them to offend.”But the situation is different when it comes to treatment—the appropriate therapy will depend on underlying personality tendencies. Psychopaths tend not to respond well to punishment because they cannot associate it with acts they do not consider in any way morally wrong, according to Jones. But they are more likely to respond to reward. “One example of this is currently underway at a school in Buckinghamshire (UK) for primary aged children with Emotional and Behavioural Difficulties,” said Jones. “There have been very encouraging reports from teachers so far. The intervention is largely reward based, and the pupils gain rewards by working toward reaching their behavioural targets each week. Pupils can ‘cash-in'' their rewards daily, or they can save them up for a more substantial reward later in the week.”Whether this will help these children to lead constructive adult lives remains to be seen. It does provide further evidence though that while it might not be possible to cure psychopaths, it may be possible to direct their selfish tendencies away from crime and violence towards more positive and creative activities.  相似文献   

7.
Greener M 《EMBO reports》2008,9(11):1067-1069
A consensus definition of life remains elusiveIn July this year, the Phoenix Lander robot—launched by NASA in 2007 as part of the Phoenix mission to Mars—provided the first irrefutable proof that water exists on the Red Planet. “We''ve seen evidence for this water ice before in observations by the Mars Odyssey orbiter and in disappearing chunks observed by Phoenix […], but this is the first time Martian water has been touched and tasted,” commented lead scientist William Boynton from the University of Arizona, USA (NASA, 2008). The robot''s discovery of water in a scooped-up soil sample increases the probability that there is, or was, life on Mars.Meanwhile, the Darwin project, under development by the European Space Agency (ESA; Paris, France; www.esa.int/science/darwin), envisages a flotilla of four or five free-flying spacecraft to search for the chemical signatures of life in 25 to 50 planetary systems. Yet, in the vastness of space, to paraphrase the British astrophysicist Arthur Eddington (1822–1944), life might be not only stranger than we imagine, but also stranger than we can imagine. The limits of our current definitions of life raise the possibility that we would not be able to recognize an extra-terrestrial organism.Back on Earth, molecular biologists—whether deliberately or not—are empirically tackling the question of what is life. Researchers at the J Craig Venter Institute (Rockville, MD, USA), for example, have synthesized an artificial bacterial genome (Gibson et al, 2008). Others have worked on ‘minimal cells'' with the aim of synthesizing a ‘bioreactor'' that contains the minimum of components necessary to be self-sustaining, reproduce and evolve. Some biologists regard these features as the hallmarks of life (Luisi, 2007). However, to decide who is first in the ‘race to create life'' requires a consensus definition of life itself. “A definition of the precise boundary between complex chemistry and life will be critical in deciding which group has succeeded in what might be regarded by the public as the world''s first theology practical,” commented Jamie Davies, Professor of Experimental Anatomy at the University of Edinburgh, UK.For most biologists, defining life is a fascinating, fundamental, but largely academic question. It is, however, crucial for exobiologists looking for extra-terrestrial life on Mars, Jupiter''s moon Europa, Saturn''s moon Titan and on planets outside our solar system.In their search for life, exobiologists base their working hypothesis on the only example to hand: life on Earth. “At the moment, we can only assume that life elsewhere is based on the same principles as on Earth,” said Malcolm Fridlund, Secretary for the Exo-Planet Roadmap Advisory Team at the ESA''s European Space Research and Technology Centre (Noordwijk, The Netherlands). “We should, however, always remember that the universe is a peculiar place and try to interpret unexpected results in terms of new physics and chemistry.”The ESA''s Darwin mission will, therefore, search for life-related gases such as carbon dioxide, water, methane and ozone in the atmospheres of other planets. On Earth, the emergence of life altered the balance of atmospheric gases: living organisms produced all of the Earth'' oxygen, which now accounts for one-fifth of the atmosphere. “If all life on Earth was extinguished, the oxygen in our atmosphere would disappear in less than 4 million years, which is a very short time as planets go—the Earth is 4.5 billion years old,” Fridlund said. He added that organisms present in the early phases of life on Earth produced methane, which alters atmospheric composition compared with a planet devoid of life.Although the Darwin project will use a pragmatic and specific definition of life, biologists, philosophers and science-fiction authors have devised numerous other definitions—none of which are entirely satisfactory. Some are based on basic physiological characteristics: a living organism must feed, grow, metabolize, respond to stimuli and reproduce. Others invoke metabolic definitions that define a living organism as having a distinct boundary—such as a membrane—which facilitates interaction with the environment and transfers the raw materials needed to maintain its structure (Wharton, 2002). The minimal cell project, for example, defines cellular life as “the capability to display a concert of three main properties: self-maintenance (metabolism), reproduction and evolution. When these three properties are simultaneously present, we will have a full fledged cellular life” (Luisi, 2007). These concepts regard life as an emergent phenomenon arising from the interaction of non-living chemical components.Cryptobiosis—hidden life, also known as anabiosis—and bacterial endospores challenge the physiological and metabolic elements of these definitions (Wharton, 2002). When the environment changes, certain organisms are able to undergo cryptobiosis—a state in which their metabolic activity either ceases reversibly or is barely discernible. Cryptobiosis allows the larvae of the African fly Polypedilum vanderplanki to survive desiccation for up to 17 years and temperatures ranging from −270 °C (liquid helium) to 106 °C (Watanabe et al, 2002). It also allows the cysts of the brine shrimp Artemia to survive desiccation, ultraviolet radiation, extremes of temperature (Wharton, 2002) and even toyshops, which sell the cysts as ‘sea monkeys''. Organisms in a cryptobiotic state show characteristics that vary markedly from what we normally consider to be life, although they are certainly not dead. “[C]ryptobiosis is a unique state of biological organization”, commented James Clegg, from the Bodega Marine Laboratory at the University of California (Davies, CA, USA), in an article in 2001 (Clegg, 2001). Bacterial endospores, which are the “hardiest known form of life on Earth” (Nicholson et al, 2000), are able to withstand almost any environment—perhaps even interplanetary space. Microbiologists isolated endospores of strict thermophiles from cold lake sediments and revived spores from samples some 100,000 years old (Nicholson et al, 2000).…life might be not only stranger than we imagine, but also stranger than we can imagineAnother problem with the definitions of life is that these can expand beyond biology. The minimal cell project, for example, in common with most modern definitions of life, encompass the ability to undergo Darwinian evolution (Wharton, 2002). “To be considered alive, the organism needs to be able to undergo extensive genetic modification through natural selection,” said Professor Paul Freemont from Imperial College London, UK, whose research interests encompass synthetic biology. But the virtual ‘organisms'' in computer simulations such as the Game of Life (www.bitstorm.org/gameoflife) and Tierra (http://life.ou.edu/tierra) also exhibit life-like characteristics, including growth, death and evolution—similar to robots and other artifical systems that attempt to mimic life (Guruprasad & Sekar, 2006). “At the moment, we have some problems differentiating these approaches from something biologists consider [to be] alive,” Fridlund commented.…to decide who is first in the ‘race to create life'' requires a consensus definition of lifeBoth the genetic code and all computer-programming languages are means of communicating large quantities of codified information, which adds another element to a comprehensive definition of life. Guenther Witzany, an Austrian philosopher, has developed a “theory of communicative nature” that, he claims, differentiates biotic and abiotic life. “Life is distinguished from non-living matter by language and communication,” Witzany said. According to his theory, RNA and DNA use a ‘molecular syntax'' to make sense of the genetic code in a manner similar to language. This paragraph, for example, could contain the same words in a random order; it would be meaningless without syntactic and semantic rules. “The RNA/DNA language follows syntactic, semantic and pragmatic rules which are absent in [a] random-like mixture of nucleic acids,” Witzany explained.Yet, successful communication requires both a speaker using the rules and a listener who is aware of and can understand the syntax and semantics. For example, cells, tissues, organs and organisms communicate with each other to coordinate and organize their activities; in other words, they exchange signals that contain meaning. Noradrenaline binding to a β-adrenergic receptor in the bronchi communicates a signal that says ‘dilate''. “If communication processes are deformed, destroyed or otherwise incorrectly mediated, both coordination and organisation of cellular life is damaged or disturbed, which can lead to disease,” Witzany added. “Cellular life also interprets abiotic environmental circumstances—such as the availability of nutrients, temperature and so on—to generate appropriate behaviour.”Nonetheless, even definitions of life that include all the elements mentioned so far might still be incomplete. “One can make a very complex definition that covers life on the Earth, but what if we find life elsewhere and it is different? My opinion, shared by many, is that we don''t have a clue of how life arose on Earth, even if there are some hypotheses,” Fridlund said. “This underlies many of our problems defining life. Since we do not have a good minimum definition of life, it is hard or impossible to find out how life arose without observing the process. Nevertheless, I''m an optimist who believes the universe is understandable with some hard work and I think we will understand these issues one day.”Both synthetic biology and research on organisms that live in extreme conditions allow biologists to explore biological boundaries, which might help them to reach a consensual minimum definition of life, and understand how it arose and evolved. Life is certainly able to flourish in some remarkably hostile environments. Thermus aquaticus, for example, is metabolically optimal in the springs of Yellowstone National Park at temperatures between 75 °C and 80 °C. Another extremophile, Deinococcus radiodurans, has evolved a highly efficient biphasic system to repair radiation-induced DNA breaks (Misra et al, 2006) and, as Fridlund noted, “is remarkably resistant to gamma radiation and even lives in the cooling ponds of nuclear reactors.”In turn, synthetic biology allows for a detailed examination of the elements that define life, including the minimum set of genes required to create a living organism. Researchers at the J Craig Venter Institute, for example, have synthesized a 582,970-base-pair Mycoplasma genitalium genome containing all the genes of the wild-type bacteria, except one that they disrupted to block pathogenicity and allow for selection. ‘Watermarks'' at intergenic sites that tolerate transposon insertions identify the synthetic genome, which would otherwise be indistinguishable from the wild type (Gibson et al, 2008).Yet, as Pier Luigi Luisi from the University of Roma in Italy remarked, even M. genitalium is relatively complex. “The question is whether such complexity is necessary for cellular life, or whether, instead, cellular life could, in principle, also be possible with a much lower number of molecular components”, he said. After all, life probably did not start with cells that already contained thousands of genes (Luisi, 2007).…researchers will continue their attempts to create life in the test tube—it is, after all, one of the greatest scientific challengesTo investigate further the minimum number of genes required for life, researchers are using minimal cell models: synthetic genomes that can be included in liposomes, which themselves show some life-like characteristics. Certain lipid vesicles are able to grow, divide and grow again, and can include polymerase enzymes to synthesize RNA from external substrates as well as functional translation apparatuses, including ribosomes (Deamer, 2005).However, the requirement that an organism be subject to natural selection to be considered alive could prove to be a major hurdle for current attempts to create life. As Freemont commented: “Synthetic biologists could include the components that go into a cell and create an organism [that is] indistinguishable from one that evolved naturally and that can replicate […] We are beginning to get to grips with what makes the cell work. Including an element that undergoes natural selection is proving more intractable.”John Dupré, Professor of Philosophy of Science and Director of the Economic and Social Research Council (ESRC) Centre for Genomics in Society at the University of Exeter, UK, commented that synthetic biologists still approach the construction of a minimal organism with certain preconceptions. “All synthetic biology research assumes certain things about life and what it is, and any claims to have ‘confirmed'' certain intuitions—such as life is not a vital principle—aren''t really adding empirical evidence for those intuitions. Anyone with the opposite intuition may simply refuse to admit that the objects in question are living,” he said. “To the extent that synthetic biology is able to draw a clear line between life and non-life, this is only possible in relation to defining concepts brought to the research. For example, synthetic biologists may be able to determine the number of genes required for minimal function. Nevertheless, ‘what counts as life'' is unaffected by minimal genomics.”Partly because of these preconceptions, Dan Nicholson, a former molecular biologist now working at the ESRC Centre, commented that synthetic biology adds little to the understanding of life already gained from molecular biology and biochemistry. Nevertheless, he said, synthetic biology might allow us to go boldly into the realms of biological possibility where evolution has not gone before.An engineered synthetic organism could, for example, express novel amino acids, proteins, nucleic acids or vesicular forms. A synthetic organism could use pyranosyl-RNA, which produces a stronger and more selective pairing system than the natural existent furanosyl-RNA (Bolli et al, 1997). Furthermore, the synthesis of proteins that do not exist in nature—so-called never-born proteins—could help scientists to understand why evolutionary pressures only selected certain structures.As Luisi remarked, the ratio between the number of theoretically possible proteins containing 100 amino acids and the real number present in nature is close to the ratio between the space of the universe and the space of a single hydrogen atom, or the ratio between all the sand in the Sahara Desert and a single grain. Exploring never-born proteins could, therefore, allow synthetic biologists to determine whether particular physical, structural, catalytic, thermodynamic and other properties maximized the evolutionary fitness of natural proteins, or whether the current protein repertoire is predominately the result of chance (Luisi, 2007).In the final analysis, as with all science, deep understanding is more important than labelling with words.“Synthetic biology also could conceivably help overcome the ‘n = 1 problem''—namely, that we base biological theorising on terrestrial life only,” Nicholson said. “In this way, synthetic biology could contribute to the development of a more general, broader understanding of what life is and how it might be defined.”No matter the uncertainties, researchers will continue their attempts to create life in the test tube—it is, after all, one of the greatest scientific challenges. Whether or not they succeed will depend partly on the definition of life that they use, though in any case, the research should yield numerous insights that are beneficial to biologists generally. “The process of creating a living system from chemical components will undoubtedly offer many rich insights into biology,” Davies concluded. “However, the definition will, I fear, reflect politics more than biology. Any definition will, therefore, be subject to a lot of inter-lab political pressure. Definitions are also important for bioethical legislation and, as a result, reflect larger politics more than biology. In the final analysis, as with all science, deep understanding is more important than labelling with words.”  相似文献   

8.
9.
Geneticists and historians collaborated recently to identify the remains of King Richard III of England, found buried under a car park. Genetics has many more contributions to make to history, but scientists and historians must learn to speak each other''s languages.The remains of King Richard III (1452–1485), who was killed with sword in hand at the Battle of Bosworth Field at the end of the War of the Roses, had lain undiscovered for centuries. Earlier this year, molecular biologists, historians, archaeologists and other experts from the University of Leicester, UK, reported that they had finally found his last resting place. They compared ancient DNA extracted from a scoliotic skeleton discovered under a car park in Leicester—once the site of Greyfriars church, where Richard was rumoured to be buried, but the location of which had been lost to time—with that of a seventeenth generation nephew of King Richard: it was a match. Richard has captured the public imagination for centuries: Tudor-friendly playwright William Shakespeare (1564–1616) portrayed Richard as an evil hunchback who killed his nephews in order to ascend to the throne, whilst in succeeding years others have leapt to his defence and backed an effort to find his remains.The application of genetics to history is revealing much about the ancestry and movements of groups of humans, from the fall of the Roman Empire to ancient ChinaMolecular biologist Turi King, who led the Leicester team that extracted the DNA and tracked down a descendant of Richard''s older sister, said that Richard''s case shows how multi-disciplinary teams can join forces to answer history''s questions. “There is a lot of talk about what meaning does it have,” she said. “It tells us where Richard III was buried; that the story that he was buried in Greyfriars is true. I think there are some people who [will] try and say: “well, it''s going to change our view of him” […] It won''t, for example, tell us about his personality or if he was responsible for the killing of the Princes in the Tower.”The discovery and identification of Richard''s skeleton made headlines around the world, but he is not the main prize when it comes to collaborations between historians and molecular biologists. Although some of the work has focused on high-profile historic figures—such as Louis XVI (1754–1793), the only French king to be executed, and Vlad the Impaler, the Transylvanian royal whose patronymic name inspired Bram Stoker''s Dracula (Fig 1)—many other projects involve population studies. Application of genetics to history is revealing much about the ancestry and movements of groups of humans, from the fall of the Roman Empire to ancient China.Open in a separate windowFigure 1The use of molecular genetics to untangle history. Even when the historical record is robust, molecular biology can contribute to our understanding of important figures and their legacies and provide revealing answers to questions about ancient princes and kings.Medieval historian Michael McCormick of Harvard University, USA, commented that historians have traditionally relied on studying records written on paper, sheepskin and papyrus. However, he and other historians are now teaming up with geneticists to read the historical record written down in the human genome and expand their portfolio of evidence. “What we''re seeing happening now—because of the tremendous impact from the natural sciences and particularly the application of genomics; what some of us are calling genomic archaeology—is that we''re working back from modern genomes to past events reported in our genomes,” McCormick explained. “The boundaries between history and pre-history are beginning to dissolve. It''s a really very, very exciting time.”…in the absence of written records, DNA and archaeological records could help fill in gapsMcCormick partnered with Mark Thomas, an evolutionary geneticist at University College London, UK, to try to unravel the mystery of one million Romano-Celtic men who went missing in Britain after the fall of the Roman Empire. Between the fourth and seventh centuries, Germanic tribes of Angles, Saxons and Jutes began to settle in Britain, replacing the Romano-British culture and forcing some of the original inhabitants to migrate to other areas. “You can''t explain the predominance of the Germanic Y chromosome in England based on the population unless you imagine (a) that they killed all the male Romano-Celts or (b) there was what Mark called ‘sexual apartheid'' and the conquerors mated preferentially with the local women. [The latter] seems to be the best explanation that I can see,” McCormick said of the puzzle.Ian Barnes, a molecular palaeobiologist at Royal Holloway University of London, commented that McCormick studies an unusual period, for which both archaeological and written records exist. “I think archaeologists and historians are used to having conflicting evidence between the documentary record and the archaeological record. If we bring in DNA, the goal is to work out how to pair all the information together into the most coherent story.”Patrick Geary, Professor of Western Medieval History at the Institute for Advanced Study in Princeton, New Jersey, USA, studies the migration period of Europe: a time in the first millennium when Germanic tribes, including the Goths, Vandals, Huns and Longobards, moved across Europe as the Roman Empire was declining. “We do not have detailed written information about these migrations or invasions or whatever one wants to call them. Primarily what we have are accounts written later on, some generations later, from the contemporary record. What we tend to have are things like sermons bemoaning the faith of people because God''s wrath has brought the barbarians on them. Hardly the kind of thing that gives us an idea of exactly what is going on—are these really invasions, are they migrations, are they small military groups entering the Empire? And what are these ‘peoples'': biologically related ethnic groups, or ad hoc confederations?” he said.Geary thinks that in the absence of written records, DNA and archaeological records could help fill in the gaps. He gives the example of jewellery, belt buckles and weapons found in ancient graves in Hungary and Northern and Southern Italy, which suggest migrations rather than invasions: “If you find this kind of jewellery in one area and then you find it in a cemetery in another, does it mean that somebody was selling jewellery in these two areas? Does this mean that people in Italy—possibly because of political change—want to identify themselves, dress themselves in a new style? This is hotly debated,” Geary explained. Material goods can suggest a relationship between people but the confirmation will be found in their DNA. “These are the kinds of questions that nobody has been able to ask because until very recently, DNA analysis simply could not be done and there were so many problems with it that this was just hopeless,” he explained. Geary has already collected some ancient DNA samples and plans to collect more from burial sites north and south of the Alps dating from the sixth century, hoping to sort out kinship relations and genetic profiles of populations.King said that working with ancient DNA is a tricky business. “There are two reasons that mitochondrial DNA (mtDNA) is the DNA we wished to be able to analyse in [King] Richard. In the first instance, we had a female line relative of Richard III and mtDNA is passed through the female line. Fortunately, it''s also the most likely bit of DNA that we''d be able to retrieve from the skeletal remains, as there are so many copies of it in the cell. After death, our DNA degrades, so mtDNA is easier to retrieve simply due to the sheer number of copies in each cell.”Geary contrasted the analysis of modern and ancient DNA. He called modern DNA analysis “[…] almost an industrial thing. You send it off to a lab, you get it back, it''s very mechanical.” Meanwhile, he described ancient DNA work as artisanal, because of degeneration and contamination. “Everything that touched it, every living thing, every microbe, every worm, every archaeologist leaves DNA traces, so it''s a real mess.” He said the success rate for extracting ancient mtDNA from teeth and dense bones is only 35%. The rate for nuclear DNA is only 10%. “Five years ago, the chances would have been zero of getting any, so 10% is a great step forward. And it''s possible we would do even better because this is a field that is rapidly transforming.”But the bottleneck is not only the technical challenge to extract and analyse ancient DNA. Historians and geneticists also need to understand each other better. “That''s why historians have to learn what it is that geneticists do, what this data is, and the geneticists have to understand the kind of questions that [historians are] trying to ask, which are not the old nineteenth century questions about identity, but questions about population, about gender roles, about relationship,” Geary said.DNA analysis can help to resolve historical questions and mysteries about our ancestors, but both historians and geneticists are becoming concerned about potential abuses and frivolous applications of DNA analysis in their fields. Thomas is particularly disturbed by studies based on single historical figures. “Unless it''s a pretty damn advanced analysis, then studying individuals isn''t particularly useful for history unless you want to say something like this person had blue eyes or whatever. Population level studies are best,” he said. He conceded that the genetic analysis of Richard III''s remnants was a sound application but added that this often is not the case with other uses, which he referred to as “genetic astrology.” He was critical of researchers who come to unsubstantiated conclusions based on ancient DNA, and scientific journals that readily publish such papers.…both historians and geneticists are becoming concerned about potential abuses or frivolous applications of DNA analysis in their fieldsThomas said that it is reasonable to analyse a Y chromosome or mtDNA to estimate a certain genetic trait. “But then to look at the distribution of those, note in the tree where those types are found, and informally, interpretively make inferences—“Well this must have come from here and therefore when I find it somewhere else then that means that person must have ancestors from this original place”—[…] that''s deeply flawed. It''s the most widely used method for telling historical stories from genetic data. And yet is easily the one with the least credibility.” Thomas criticized such facile use of genetic data, which misleads the public and the media. “I suppose I can''t blame these [broadcast] guys because it''s their job to make the programme look interesting. If somebody comes along and says ‘well, I can tell you you''re descended from some Viking warlord or some Celtic princess'', then who are they to question.”Similarly, the historians have reservations about making questionable historical claims on the basis of DNA analysis. Geary said the use of mtDNA to identify Richard III was valuable because it answered a specific, factual question. However, he is turned off by other research using DNA to look at individual figures, such as a case involving a princess who was a direct descendant of the woman who posed for Leonardo Da Vinci''s Mona Lisa. “There''s some people running around trying to dig up famous people and prove the obvious. I think that''s kind of silly. There are others that I think are quite appropriate, and while is not my kind of history, I think it is fine,” he said. “The Richard III case was in the tradition of forensics.”…the cases in which historians and archaeologists work with molecular biologists are rare and remain disconnected in general from the mainstream of historical or archaeological researchNicola Di Cosmo, a historian at the Institute for Advanced Study, who is researching the impact of climate change on the thirteenth century Mongol empire, follows closely the advances in DNA and history research, but has not yet applied it to his own work. Nevertheless, he said that genetics could help to understand the period he studies because there are no historical documents, although monumental burials exist. “It is important to get a sense of where these people came from, and that''s where genetics can help,” he said. He is also concerned about geneticists who publish results without involving historians and without examining other records. He cited a genetic study of a so-called ‘Eurasian male'' in a prestige burial of the Asian Hun Xiongnu, a nomadic people who at the end of the third century B.C. formed a tribal league that dominated most of Central Asia for more than 500 years. “The conclusion the geneticists came to was that there was some sort of racial tolerance in this nomadic empire, but we have no way to even assume that they had any concept of race or tolerance.”Di Cosmo commented that the cases in which historians and archaeologists work with molecular biologists are rare and remain disconnected in general from the mainstream of historical or archaeological research. “I believe that historians, especially those working in areas for which written records are non-existent, ought to be taking seriously the evidence churned out by genetic laboratories. On the other hand, geneticists must realize that the effectiveness of their research is limited unless they access reliable historical information and understand how a historical argument may or may not explain the genetic data” [1].Notwithstanding the difficulties in collaboration between two fields, McCormick is excited about historians working with DNA. He said the intersection of history and genomics could create a new scientific discipline in the years ahead. “I don''t know what we''d call it. It would be a sort of fusion science. It certainly has the potential to produce enormous amounts of enormously interesting new evidence about our human past.”  相似文献   

10.
11.
Hunter P 《EMBO reports》2011,12(3):205-207
A more complete catalogue of the Earth''s fauna and flora and a more holistic view of man-made environmental problems could help to slow the rate of biodiversity loss.In the wake of the admission from the United Nations (UN) that, to date, efforts have failed to even slow down the rate of extinction across almost all plant and animal taxa (CBD, 2010), the fight to reverse the human-induced loss of biodiversity is entering a new chapter. The failure to achieve the targets set in 2002 for reducing decline has led to a revised strategy from the Campaign for Biodiversity (CBD). This new approach recognizes that species conservation cannot be treated in isolation from other issues facing humans, including climate change, water scarcity, poverty, agricultural development and global conflict. It also acknowledges that declining biodiversity cannot be tackled properly without a more accurate inventory of the species in existence today. Thus, a large part of the strategy to combat species decline focuses on building an exhaustive catalogue of life.The Global Strategy for Plant Conservation includes such a plan. The intention is to compile an online flora of known plants by 2020, which should enable comprehensive conservation efforts to gather steam. Peter Wyse Jackson, president of the Missouri Botanical Garden in the USA, said that around 25% of the estimated 400,000 plant species in the world, are thought to be threatened. He said that around 850 botanical gardens have, between them, collected around 100,000 species, but only a quarter of these are from the threatened group. “World Flora online will then be an essential baseline to determine the status of individual plant species and threats to them,” Jackson explained. “By 2020 it is proposed that at least 75% of known threatened plants should be conserved both in the wild and in existing collections.”…an online flora of known plants […] should enable comprehensive conservation efforts to gather steamMissouri Botanical Gardens will have an important role in the project and Jackson commented that the first step of the plan has already been achieved: the establishment of an online checklist of flora that is needed to build a comprehensive database of the plant species in the world.Yet, some other plans to halt species decline have drawn criticism. “In my opinion, whilst such international targets are useful to motivate individuals, states and wider society to do conservation, they are not necessarily realistic because they are often ‘pulled out of the hat'' with very little science behind them,” commented Shonil Bhagwat, senior research fellow at the School of Geography and the Environment at Oxford University.The revised CBD plan specifies measures for reversing the decline in biodiversity. One target is to enlarge protected areas for wildlife, within which activities such as logging are prohibited. Ecological corridors could then connect these areas to allow migration and create a network of ‘safe'' places for wildlife.Such a corridor is being created between two parts of the Brazilian Atlantic rainforest—the Pau Brasil National Park and the Monte Pascoal National Park—both of which are already protected. “Well-managed protected areas keep away biodiversity threats, such as deforestation, invasive species, hunting and poaching,” explained Arnd Alexander Rose, marketing manager for Brazil at The Nature Conservancy, a conservation organization that operates on all continents. “We think that the connectivity between the national parks is essential for the long-term permanence of local species, especially fauna,” Rose said.Worldwide, only around 6% of coastlines are within protected areas, but around 12% of the total land area is protected—a figure that is perhaps higher than many would expect, reflecting the large size of many national parks and other designated wildlife zones. Nevertheless, the coverage of different habitats varies greatly: “Only 5% of the world''s temperate needle-leaf forests and woodlands, 4.4% of temperate grasslands and 2.2% of lake systems are protected” (CBD, 2010). The aim of the CBD is to increase the total area of protected land to 17% by 2020, and also to expand the protected coastal zones, as well as extending the area of protected oceans to 10%.Things at sea, however, are different; both in terms of biodiversity and protection. The biggest threat to many marine species is not direct human activity—poaching or habitat encroachment, for example—but the impact of increased ocean acidity due to rising atmospheric carbon dioxide levels. Halting or reversing this increase will therefore contribute to the marine conservation effort and biodiversity in the long term.However, the first task is to establish the extent of marine biodiversity, particularly in terms of invertebrate animals, which are not well catalogued. Ian Poiner is CEO of the Australian Institute of Marine Science and chair of the steering committee for the first Census of Marine Life (Census of Marine Life, 2010), which has revealed the enormity of our remaining uncertainty. “So far 250,000 species [of invertebrates] have been formally described, but at least another 750,000 remain to be discovered, and I think it could be as many as 10 million,” Poiner said. As evidence for this uncertainty he points to the continuing high rate of discovery of new species around coral reefs, where each organism also tends to come with a new parasite. The situation is compounded by the problem of how to define diversity among prokaryotes.“…250,000 species [of invertebrates] have been formally described, but at least another 750,000 remain to be discovered…”Even if the number of non-vertebrate marine species remaining to be discovered turns out to be at the low end of estimates, Poiner points out that the abundance and diversity of life in the oceans will still be far greater than was expected before the census. For fish—a group that has been more extensively analysed than invertebrates—Poiner notes that there are several thousand species yet to be discovered, in addition to the 25,000 or more known species.The levels of diversity are perhaps most surprising for microorganisms. It was expected that these organisms would be present in astronomically large numbers—they are thought to account for 50–90% of the biomass in the oceans, as measured by total amount of carbon—but the high degree of genetic divergence found within even relatively small areas was unexpected. “We found there are about 38,000 kinds of bacteria in a litre of sea water,” Poiner said. “We also found that rarity is common, especially for microbes. If you take two separate litre samples of sea water just 10 or 20 kilometres apart, only a small percentage of the 38,000 bacteria types in each one are of the same kind. The challenge now is to find out why most are so rare.”This mystery is confounded by another result of the census: there is a much greater degree of connectedness than had been expected. Many fish, and even smaller invertebrate species, travel huge distances and navigate with great accuracy, rather like migratory birds. “Pacific white sharks will travel long distances and come back to within 50 metres from where they started,” Poiner said, by way of example.The behaviour of the sharks was discovered by using new tags, measuring just a few centimetres across, that can be attached to the heads of any large creatures to track their location and measure temperature, conductivity—and thereby salinity—and depth. For smaller creatures, such as baby salmon, a different technology is used that involves the attachment of passive acoustic sensors to their bodies. These trigger a signal when the fish swim through arrays of acoustic receivers that are installed in shallower waters at locations throughout the oceans.Although tagging and acoustic monitoring are providing new information about the movements and interactions of many species throughout the oceans, the huge task remains of identifying and cataloguing those species. For this, the quickly maturing technique of DNA barcoding has been useful and provides a relatively inexpensive and convenient way of assessing whether a specimen belongs to a new species or not. The method uses a short DNA sequence in the mitochondrial gene for cytochrome c oxidase subunit 1 (CO1)—around 600 base pairs in most species—which differs little within species but significantly between them (Kress & Erickson, 2008).The Marine Census programme involves several barcoding centres that have determined barcodes for more than 2,000 of the 7,000 known species of holozooplankton, for example (Census of Marine Zooplankton: http://www.cmarz.org). Holozooplankton are small, completely planktonic invertebrates—which spend their lives floating or swimming in open water—and are a particularly sensitive marker of environmental changes such as ocean warming or acidification.DNA barcoding can also be applied to prokaryotes, although it requires alternative sequences owing to the lack of mitochondria. In addition, horizontal gene transfer and uncertainty about how to define prokaryotic species complicate the task of cataloguing them. Nevertheless, by targeting a suitable core subset of a few genes, bacteria and archaea can be identified quite accurately, and barcoding can increase our knowledge and understanding of their behaviour and evolution.Such techniques could be applied to the identification of marine prokaryotic species, but Poiner argues that they need further refinement and will probably need to be combined with analytical methods that help estimate the total diversity, given that it is impossible to identify every single species at present. Indeed, the task of assessing the diversity of even land-based microorganisms is difficult, but such cataloguing is a prerequisite for accurate assessment of their response to environmental change.“There is a general rule that the smaller things are the less we know about them,” commented Stephen Blackmore, Regius Keeper of the Royal Botanical Gardens in Edinburgh, UK, a leading centre for conservation research. “I think it is very difficult or too early to say how biodiversity at the microscopic level is being impacted. Some of the newer approaches using DNA diversity to see, for example, what microorganisms are present in soil, will be important.”In the immediate future, advanced DNA analysis techniques have a more urgent application: the identification of genetic diversity within eukaryotic species. This is important because it determines the ability of populations to cope with rapid change: a species with greater genetic diversity is more likely to have individuals with phenotypes capable of surviving changes in habitat, temperature or nutrient availability. Genetic evidence will help to determine the secret of success for many invasive species of plants and animals, as they have already adapted to human influence.“A major emerging theme is to look at the genetic diversity present in wild plant populations and to try to correlate this with identifying the populations that are best suited for coping with climate change,” Blackmore said. “But it''s a very new field and so far not much is being funded. Meanwhile, the immediate prospect is that plants will continue slipping away more or less un-noticed. Even where the landscape appears green there is generally a steady erosion of plant biodiversity going, on driven by the shrinking of natural habitats, the encroachment of invasive species, climate change and land management practices.”Yet Blackmore is optimistic that knowledge of how to preserve biodiversity is increasing, even for less adaptable species. “We know how to, for example, grow food crops in ways that are more beneficial to biodiversity, but the desire for the cheapest food means that uptake is too limited. We know how to do most of the things needed to protect biodiversity. Unfortunately they are not being done.”There is hope, though, that increased understanding of biodiversity as a single, interconnected problem—rather than a series of unrelated hot spots and particular species—will lead to more coherent strategies for arresting global decline. The fate of flowering plants, for example, is intimately tied to their pollinators and seed dispersers. Most land animals in turn depend directly or indirectly on plants. “Since plants are the base of the food chain in all terrestrial environments, the threats to animals are increasing even more rapidly than those to the plants they depend upon,” Blackmore noted. “It is still the case, however, that most conservation action is framed in terms of charismatic animals—such as tigers, whales, polar bears and pandas—rather than on the continuation of the kinds of place they require to live in.”Due to human nature, this ‘cute'' framing of the problem is perhaps inevitable. However, if it creates a groundswell of public concern leading to voluntary involvement and donation towards biodiversity conservation, then all species might benefit in the end. After all, animals and plants do not respect arbitrary human boundaries, so an ecological corridor and protected habitat created for tigers will also benefit other, less ‘cuddly'' species.  相似文献   

12.
Wolinsky H 《EMBO reports》2011,12(2):107-109
Considering a patient''s ethnic background can make some diagnoses easier. Yet, ‘racial profiling'' is a highly controversial concept and might soon be replaced by the advent of individualized medicine.In 2005, the US Food and Drug Administration (FDA; Bethesda, MD, USA) approved BiDil—a combination of vasodilators to treat heart failure—and hailed it as the first drug to specifically treat an ethnic group. “Approval of a drug to treat severe heart failure in self-identified black population is a striking example of how a treatment can benefit some patients even if it does not help all patients,” announced Robert Temple, the FDA''s Director of Medical Policy. “The information presented to the FDA clearly showed that blacks suffering from heart failure will now have an additional safe and effective option for treating their condition” (Temple & Stockbridge, 2007). Even the National Medical Association—the African-American version of the American Medical Association—advocated the drug, which was developed by NitroMed, Inc. (Lexington, MA, USA). A new era in medicine based on racial profiling seemed to be in the offing.By January 2008, however, the ‘breakthrough'' had gone bust. NitroMed shut down its promotional campaign for BiDil—a combination of the vasodilators isosorbide dinitrate, which affects arteries and veins, and hydralazine hydrochloride, which predominantly affects arteries. In 2009, it sold its BiDil interests and was itself acquired by another pharmaceutical company.In the meantime, critics had largely discredited the efforts of NitroMed, thereby striking a blow against the drug if not the concept of racial profiling or race-based medicine. Jonathan Kahn, a historian and law professor at Hamline University (St Paul, MN, USA), described the BiDil strategy as “a leap to genetics.” He demonstrated that NitroMed, motivated to extend its US patent scheduled to expire in 2007, purported to discover an advantage for a subpopulation of self-identified black people (Kahn, 2009). He noted that NitroMed conducted a race-specific trial to gain FDA approval, but, as there were no comparisons with other populations, it never had conclusive data to show that BiDil worked in black people differently from anyone else.“If you want to understand heart failure, you look at heart failure, and if you want to understand racial disparities in conditions such as heart failure or hypertension, there is much to look at that has nothing to do with genetics,” Kahn said, adding “that jumping to race as a genetic construct is premature at best and reckless generally in practice.” The USA, he explained, has a century-old tradition of marketing to racial and ethnic groups. “BiDil brought to the fore the notion that you can have ethnic markets not only in things like cigarettes and food, but also in pharmaceuticals,” Kahn commented.“BiDil brought to the fore the notion that you can have ethnic markets not only in things like cigarettes and food, but also in pharmaceuticals”However, despite BiDil''s failure, the search for race-based therapies and diagnostics is not over. “What I have found is an increasing, almost exponential, rise in the use of racial and ethnic categories in biotechnology-related patents,” Kahn said. “A lot of these products are still in the pipeline. They''re still patent applications, they''re not out on the market yet so it''s hard to know how they''ll play out.”The growing knowledge of the human genome is also providing new opportunities to market medical products aimed at specific ethnic groups. The first bumpy steps were taken with screening for genetic risk factors for breast cancers. Myriad Genetics (Salt Lake City, UT, USA) holds broad patents in the USA for breast-cancer screening tests that are based on mutations of the BRCA1 and BRCA2 genes, but it faced challenges in Europe, where critics raised concerns about the high costs of screening.The growing knowledge of the human genome is also providing new opportunities to market medical products aimed at specific ethnic groupsThe European Patent Office initially granted Myriad patents for the BRCA1 and BRCA2-based tests in 2001, after years of debate. But it revoked the patent on BRCA1 in 2005, which was again reversed in 2009. In 2005 Myriad decided to narrow the scope of BRCA2 testing on the basis of ethnicity. The company won a patent to predict breast-cancer risk in Ashkenazi Jewish women on the basis of BRCA2 mutations, which occur in one in 100 of these women. Physicians offering the test are supposed to ask their patients whether they are in this ethnic group, and then pay a fee to Myriad.Kahn said Myriad took this approach to package the test differently in order to protect its financial interests. However, he commented, the idea of ethnic profiling by asking women whether they identify themselves as Ashkenazi Jewish and then paying extra for an ‘ethnic'' medical test did not work in Europe. “It''s ridiculous,” Kahn commented.After the preliminary sequence of the human genome was published a decade ago, experts noted that humans were almost the same genetically, implying that race was irrelevant. In fact, the validity of race as a concept in science—let alone the use of the word—has been hotly debated. “Race, inasmuch as the concept ought to be used at all, is a social concept, not a biological one. And using it as though it were a biological one is as a much an ethical problem as a scientific problem,” commented Samia Hurst, a physician and bioethicist at Geneva University Medical School in Switzerland.Switzerland.Open in a separate window© Monalyn Gracia/CorbisCiting a popular slogan: “There is no gene for race,” she noted, “there doesn''t seem to be a single cluster of genes that fits with identification within an ethnic group, let alone with disease risks as well. We''re also in an increasingly mixed world where many people—and I count myself among them—just don''t know what to check on the box. If you start counting up your grandparents and end up with four different ethnic groups, what are you going to do? So there are an increasing number of people who just don''t fit into those categories at all.”Still, some dismiss criticism of racial profiling as political correctness that could potentially prevent patients from receiving proper care. Sally Satel, a psychiatrist in Washington, DC, USA, does not shy away from describing herself as a racially profiling physician and argues that it is good medicine. A commentator and resident scholar at the nonpartisan conservative think tank, the American Enterprise Institute (Washington, DC, USA), Satel wrote the book PC, M.D.: How Political Correctness is Corrupting Medicine. “In practicing medicine, I am not color blind. I take note of my patient''s race. So do many of my colleagues,” she wrote in a New York Times article entitled “I am a racially profiling doctor” (Satel, 2002).…some dismiss criticism of racial profiling as political correctness that could potentially prevent patients from receiving proper careSatel noted in an interview that it is an undeniable fact that black people tend to have more renal disease, Native Americans have more diabetes and white people have more cystic fibrosis. She said these differences can help doctors to decide which drugs to prescribe at which dose and could potentially lead researchers to discover new therapies on the basis of race.Satel added that the mention of race and medicine makes many people nervous. “You can dispel that worry by taking pains to specify biological lineage. Simply put, members of a group have more genes in common than members of the population at large. Some day geneticists hope to be able to conduct genomic profiles of each individual, making group identity irrelevant, but until then, race-based therapeutics has its virtues,” she said. “Denying the relationship between race and medicine flies in the face of clinical reality, and pretending that we are all at equal risk for health problems carries its own dangers.”However, Hurst contended that this approach may be good epidemiology, rather than racial profiling. Physicians therefore need to be cautious about using skin colour, genomic data and epidemiological data in decision making. “If African Americans are at a higher risk for hypertension, are you not going to check for hypertension in white people? You need to check in everyone in any case,” she commented.Hurst said European physicians, similarly to their American colleagues, deal with race and racial profiling, albeit in a different way. “The way in which we struggle with it is strongly determined by the history behind what could be called the biases that we have. If you have been a colonial power, if the past is slavery or if the past or present is immigration, it does change some things,” she said. “On the other hand, you always have the difficulty of doing fair and good medicine in a social situation that has a kind of ‘them and us'' structure. Because you''re not supposed to do medicine in a ‘them and us'' structure, you''re supposed to treat everyone according to their medical needs and not according to whether they''re part of ‘your tribe'' or ‘another tribe''.”Indeed, social factors largely determine one''s health, rather than ethnic or genetic factors. August A. White III, an African-American orthopaedic surgeon at Harvard Medical School (Boston, MA, USA) and author of the book Seeing Patients: Unconscious Bias In Health Care, noted that race is linked to disparities in health care in the USA. A similar point can be made in Europe where, for example, Romani people face discrimination in several countries.White said that although genetic research shows that race is not a scientific concept, the way people are labelled in society and how they are treated needs to be taken into account. “It''d be wonderful at some point if we can pop one''s key genetic information into a computer and get a printout of which medications are best of them and which doses are best for them,” he commented. “In the meantime though, I advocate careful operational attempts to treat everyone as human beings and to value everyone''s life, not devalue old people, or devalue women, or devalue different religious faiths, etc.”Notwithstanding the scientific denunciation, a major obstacle for the concept of racial profiling has been the fact that the word ‘race'' itself is politically loaded, as a result of, among other things, the baggage of eugenics and Nazi racism and the legacies of slavery and colonialism. Richard Tutton, a sociologist at Lancaster University in the UK, said that British scientists he interviewed for a Wellcome Trust project a few years ago prefer the term ethnicity to race. “Race is used in a legal sense in relation to inequality, but certainly otherwise, ethnicity is the preferred term, which obviously is different to the US” he said. “I remember having conversations with German academics and obviously in Germany you couldn''t use the R-word.”Jan Helge Solbakk, a physician, theologian and medical ethicist at the University of Oslo in Norway, said the use of the term race in Europe is a non-starter because it makes it impossible for the public and policy-makers to communicate. “I think in Europe it would be politically impossible to launch a project targeting racial differences on the genetic level. The challenge is to find not just a more politically correct concept, but a genetically more accurate concept and to pursue such research questions,” he said. According to Kahn, researchers therefore tend to refer to ethnicity rather than race: “They''re talking about European, Asian and African, but they''re referring to it as ethnicity instead of race because they think somehow that''s more palatable.”Regardless, race-based medicine might just be a stepping stone towards more refined and accurate methods, with the advent of personalized medicine based on genomics, according to Leroy Hood, whose work has helped to develop tools to analyse the human genome. The focus of his company—the Institute for Systems Biology (Seattle, WA, USA)—is to identify genetic variants that can inform and help patients to pioneer individualized health care.“Race as a concept is disappearing with interbreeding,” Hood said. “Race distinction is going to slowly fade away. We can use it now because we have signposts for race, which are colour, fairness, kinkiness of hair, but compared to a conglomeration of things that define a race, those are very few features. The race-defining features are going to be segregating away from one another more and more as the population becomes racially heterogeneous, so I think it''s going to become a moot point.”Hood instead advocates “4P” health care—“Predictive, Personalized, Preventive and Participatory.” “My overall feeling about the race-based correlations is that it is far more important to think about the individual and their individual unique spectra of health and wellness,” he explained. “I think we are not going to deal in the future with racial or ethnic populations, rather medicine of the future is going to be focused entirely on the individual.”Yet, Arthur Caplan, Director of the Center for Bioethics at the University of Pennsylvania (Philadelphia, PA, USA), is skeptical about the prospects for both race-based and personalized medicine. “Race-based medicine will play a minor role over the next few years in health care because race is a minor factor in health,” he said. “It''s not like we have a group of people who keel over dead at 40 who are in the same ethnic group.”Caplan also argued that establishing personalized genomic medicine in a decade is a pipe dream. “The reason I say that is it''s not just the science,” he explained. “You have to redo the whole health-care system to make that possible. You have to find manufacturers who can figure out how to profit from personalized medicine who are both in Europe and the United States. You have to have doctors that know how to prescribe them. It''s a big, big revamping. That''s not going to happen in 10 years.”Hood, however, is more optimistic and plans to advance the concept with pilot projects; he believes that Europe might be the better testing ground. “I think the European systems are much more efficient for pioneering personalized medicine than the United States because the US health-care system is utterly chaotic. We have every combination of every kind of health care and health delivery. We have no common shared vision,” he said. “In the end we may well go to Europe to persuade a country to really undertake this. The possibility of facilitating a revolution in health care is greater in Europe than in the United States.”  相似文献   

13.
14.
15.
Wolinsky H 《EMBO reports》2012,13(4):308-312
Genomics has become a powerful tool for conservationists to track individual animals, analyse populations and inform conservation management. But as helpful as these techniques are, they are not a substitute for stricter measures to protect threatened species.You might call him Queequeg. Like Herman Melville''s character in the 1851 novel Moby Dick, Howard Rosenbaum plies the seas in search of whales following old whaling charts. Standing on the deck of a 12 m boat, he brandishes a crossbow with hollow-tipped darts to harpoon the flanks of the whales as they surface to breathe (Fig 1). “We liken it to a mosquito bite. Sometimes there''s a reaction. Sometimes the whales are competing to mate with a female, so they don''t even react to the dart,” explained Rosenbaum, a conservation biologist and geneticist, and Director of the New York City-based Wildlife Conservation Society''s Ocean Giants programme. Rosenbaum and his colleagues use the darts to collect half-gram biopsy samples of whale epidermis and fat—about the size of a human fingernail—to extract DNA as part of international efforts to save the whales.Open in a separate windowFigure 1Howard Rosenbaum with a crossbow to obtain skin samples from whales. © Wildlife Conservation Society.Like Rosenbaum, many conservation biologists and wildlife managers increasingly rely on DNA analysis tools to identify species, determine sex or analyse pedigrees. George Amato, Director of the Sackler Institute for Comparative Genomics at the American Museum of Natural History in New York, NY, USA, said that during his 25-year career, genetic tools have become increasingly important for conservation biology and related fields. Genetic information taken from individual animals to the extent of covering whole populations now plays a valuable part in making decisions about levels of protection for certain species or populations and managing conflicts between humans and conservation goals.[…] many conservation biologists and wildlife managers increasingly rely on DNA analysis tools to identify species, determine sex or analyse pedigreesMoreover, Amato expects the use and importance of genetics to grow even more, given that conservation of biodiversity has become a global issue. “My office overlooks Central Park. And there are conservation issues in Central Park: how do you maintain the diversity of plants and animals? I live in suburban Connecticut, where we want the highest levels of diversity within a suburban environment,” he said. “Then, you take this all the way to Central Africa. There are conservation issues across the entire spectrum of landscapes. With global climate change, techniques in genetics and molecular biology are being used to look at issues and questions across that entire landscape.”Rosenbaum commented, “The genomic revolution has certainly changed the way we think about conservation and the questions we can ask and the things we can do. It can be a forensic analysis.” The data translates “into a conservation value where governments, conservationists, and people who actively protect these species can use this information to better protect these animals in the wild.”“The genomic revolution has certainly changed the way we think about conservation […]”Rosenbaum and colleagues from the Wildlife Conservation Society, the American Museum of Natural History and other organizations used genomics for the largest study so far—based on more than 1,500 DNA samples—about the population dynamics of humpback whales in the Southern hemisphere [1]. The researchers analysed population structure and migration rates; they found the highest gene flow between whales that breed on either side of the African continent and a lower gene flow between whales on opposite sides of the Atlantic, from the Brazilian coast to southern Africa. The group also identified an isolated population of fewer than 200 humpbacks in the northern Indian Ocean off the Arabian Peninsula, which are only distantly related to the humpbacks breeding off the coast of Madagascar and the eastern coast of southern Africa. “This group is a conservation priority,” Rosenbaum noted.He said the US National Oceanographic and Atmospheric Administration is using this information to determine whether whale populations are recovering or endangered and what steps should be taken to protect them. Through wildlife management and protection, humpbacks have rebounded to 60,000 or more individuals from fewer than 5,000 in the 1960s. Rosenbaum''s data will, among other things, help to verify whether the whales should be managed as one large group or divided into subgroups.He has also been looking at DNA collected from dolphins caught in fishing nets off the coast of Argentina. Argentine officials will be using the data to make recommendations about managing these populations. “We''ve been able to demonstrate that it''s not one continuous population in Argentina. There might be multiple populations that merit conservation protection,” Rosenbaum explained.The sea turtle is another popular creature that is high on conservationists'' lists. To get DNA samples from sea turtles, population geneticist and wildlife biologist Nancy FitzSimmons from the University of Canberra in Australia reverts to a simpler method than Rosenbaum''s harpoon. “Ever hear of a turtle rodeo?” she asked. FitzSimmons goes out on a speed boat in the Great Barrier Reef with her colleagues, dives into the water and wrangles a turtle on board so it can be measured, tagged, have its reproductive system examined with a laparoscope and a skin tag removed with a small scissor or scalpel for DNA analysis (Fig 2).Open in a separate windowFigure 2Geneticist Stewart Pittard measuring a sea turtle. © Michael P. Jensen, NOAA.Like Rosenbaum, she uses DNA as a forensic tool to characterize individuals and populations [2]. “That''s been a really important part, to be able to tell people who are doing the management, ‘This population is different from that one, and you need to manage them appropriately,''” FitzSimmons explained. The researchers have characterized the turtle''s feeding grounds around Australia to determine which populations are doing well and which are not. If they see that certain groups are being harmed through predation or being trapped in ‘ghost nets'' abandoned by fishermen, conservation measures can be implemented.FitzSimmons, who started her career studying the genetics of bighorn sheep, has recently been using DNA technology in other areas, including finding purebred crocodiles to reintroduce them into a wetland ecosystem at Cat Tien National Park in Vietnam. “DNA is invaluable. You can''t reintroduce animals that aren''t purebred,” she said, explaining the rationale for looking at purebreds. “It''s been quite important to do genetic studies to make sure you''re getting the right animals to the right places.”Geneticist Hans Geir Eiken, senior researcher at the Norwegian Institute for Agricultural and Environmental Research in Svanvik, Norway, does not wrestle with the animals he is interested in. He uses a non-intrusive method to collect DNA from brown bears (Fig 3). “We collect the hair that is on the vegetation, on the ground. We can manage with only a single hair to get a DNA profile,” he said. “We can even identify mother and cub in the den based on the hairs. We can collect hairs from at least two different individuals and separate them afterwards and identify them as separate entities. Of course we also study how they are related and try to separate the bears into pedigrees, but that''s more research and it''s only occasionally that we do that for [bear] management.”Open in a separate windowFigure 3Bear management in Scandinavia. (A) A brown bear in a forest in Northern Finland © Alexander Kopatz, Norwegian Institute for Agricultural and Environmental Research. (B) Faecal sampling. Monitoring of bears in Norway is performed in a non-invasive way by sampling hair and faecal samples in the field followed by DNA profiling. © Hans Geir Eiken. (C) Brown-bear hair sample obtained by so-called systematic hair trapping. A scent lure is put in the middle of a small area surrounded by barbed wire. To investigate the smell, the bears have to cross the wire and some hair will be caught. © Hans Geir Eiken. (D) A female, 2.5-year-old bear that was shot at Svanvik in the Pasvik Valley in Norway in August 2008. She and her brother had started to eat from garbage cans after they left their mother and the authorities gave permission to shoot them. The male was shot one month later after appearing in a schoolyard. © Hans Geir Eiken.Eiken said the Norwegian government does not invest a lot of money on helicopters or other surveillance methods, and does not want to not bother the animals. “A lot of disturbing things were done to bears. They were trapped. They were radio-collared,” he said. “I think as a researcher we should replace those approaches with non-invasive genetic techniques. We don''t disturb them. We just collect samples from them.”Eiken said that the bears pose a threat to two million sheep that roam freely around Norway. “Bears can kill several tons of them everyday. This is not the case in the other countries where they don''t have free-ranging sheep. That''s why it''s a big economic issue for us in Norway.” Wildlife managers therefore have to balance the fact that brown bears are endangered against the economic interests of sheep owners; about 10% of the brown bears are killed each year because they have caused damage, or as part of a restricted ‘licensed'' hunting programme. Eiken said that within two days of a sheep kill, DNA analysis can determine which species killed the sheep, and, if it is a bear, which individual. “We protect the females with cubs. Without the DNA profiles, it would be easy to kill the females, which also take sheep of course.”Wildlife managers […] have to balance the fact that brown bears are endangered against the economic interests of sheep owners…It is not only wildlife management that interests Eiken; he was part of a group led by Axel Janke at the Biodiversity and Climate Research Centre in Frankfurt am Main, Germany, which completed sequencing of the brown bear genome last year. The genome will be compared with that of the polar bear in the hope of finding genes involved in environmental adaptation. “The reason why [the comparison is] so interesting between the polar bear and the brown bear is that if you look at their evolution, it''s [maybe] less than one million years when they separated. In genetics that''s not a very long time,” Eiken said. “But there are a lot of other issues that we think are even more interesting. Brown bears stay in their caves for 6 months in northern Norway. We think we can identify genes that allow the bear to be in the den for so long without dying from it.”Like bears, wolves have also been clashing with humans for centuries. Hunters exterminated the natural wolf population in the Scandinavian Peninsula in the late nineteenth century as governments protected reindeer farming in northern Scandinavia. After the Swedish government finally banned wolf hunting in the 1960s, three wolves from Finland and Russia immigrated in the 1980s, and the population rose to 250, along with some other wolves that joined the highly inbred population. Sweden now has a database of all individual wolves, their pedigrees and breeding territories to manage the population and resolve conflicts with farmers. “Wolves are very good at causing conflicts with people. If a wolf takes a sheep or cattle, or it is in a recreation area, it represents a potential conflict. If a wolf is identified as a problem, then the local authorities may issue a license to shoot that wolf,” said Staffan Bensch, a molecular ecologist and ornithologist at Lund University in Sweden.Again, it is the application of genomics tools that informs conservation management for the Scandinavian wolf population. Bensch, who is best known for his work on population genetics and genomics of migratory songbirds, was called to apply his knowledge of microsatellite analysis. The investigators collect saliva from the site where a predator has chewed or bitten the prey, and extract mitochondrial DNA to determine whether a wolf, a bear, a fox or a dog has killed the livestock. The genetic information potentially can serve as a death warrant if a wolf is linked with a kill, and to determine compensation for livestock owners.The genetic information potentially can serve as a death warrant if a wolf is linked with a kill…Yet, not all wolves are equal. “If it''s shown to be a genetically valuable wolf, then somehow more damage can be tolerated, such as a wolf taking livestock for instance,” Bensch said. “In the management policy, there is genetic analysis of every wolf that has a question on whether it should be shot or saved. An inbred Scandinavian wolf has no valuable genes so it''s more likely to be shot.” Moreover, Bensch said that DNA analysis showed that in at least half the cases, dogs were the predator. “There are so many more dogs than there are wolves,” he said. “Some farmers are prejudiced that it is the wolf that killed their sheep.”According to Dirk Steinke, lead scientist at Marine Barcode of Life and an evolutionary biologist at the Biodiversity Institute of Ontario at the University of Guelph in Canada, DNA barcoding could also contribute to conservation efforts. The technique—usually based on comparing the sequence of the mitochondrial CO1 gene with a database—could help to address the growing trade in shark fins for wedding feasts in China and among the Chinese diaspora, for example. Shark fins confiscated by Australian authorities from Indonesian ships are often a mess of tissue; barcoding helps them to identify the exact species. “As it turns out, some of them are really in the high-threat categories on the IUCN Red List of Threatened Species, so it was pretty concerning,” Steinke said. “That is something where barcoding turns into a tool where wildlife management can be done—even if they only get fragments of an animal. I am not sure if this can prevent people from hunting those animals, but you can at least give them the feedback on whether they did something illegal or not.”Steinke commented that DNA tools are handy not only for megafauna, but also for the humbler creatures in the sea, “especially when it comes to marine invertebrates. The larval stages are the only ones where they are mobile. If you''re looking at wildlife management from an invertebrate perspective in the sea, then these mobile life stages are very important. Their barcoding might become very handy because for some of those groups it''s the only reliable way of knowing what you''re looking at.” Yet, this does not necessarily translate into better conservation: “Enforcement reactions come much quicker when it''s for the charismatic megafauna,” Steinke conceded.“Enforcement reactions come much quicker when it''s for the charismatic megafauna”Moreover, reliable identification of animal species could even improve human health. For instance, Amato and colleagues from the US Centers for Disease Control and Prevention demonstrated for the first time the presence of zoonotic viruses in non-human primates seized in American airports [3]. They identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus), which potentially pose a threat to human health. Amato suggested that surveillance of the wildlife trade by using barcodes would help facilitate prevention of disease. Moreover, DNA barcoding could also show whether the meat itself is from monkeys or other wild animals to distinguish illegally hunted and traded bushmeat—the term used for meat from wild animals in Africa—from legal meats.Amato''s group also applied barcoding to bluefin tuna, commonly used in sushi, which he described as the “bushmeat of the developed world”, as the species is being driven to near extinction through overharvesting. Developing barcodes for tuna could help to distinguish bluefin from yellowfin or other tuna species and could assist measures to protect the bluefin. “It can be used sort of like ‘Wildlife CSI'' (after the popular American TV series),” he said.As helpful as these technologies are […] they are not sufficient to protect severely threatened species…In fact, barcoding for law enforcement is growing. Mitchell Eaton, assistant unit leader at the US Geological Survey New York Cooperative Fish and Wildlife Research Unit in Ithaca, NY, USA, noted that the technique is being used by US government agencies such as the FDA and the US Fish & Wildlife Service, as well as African and South American governments, to monitor the illegal export of pets and bushmeat. It is also used as part of the United Nations'' Convention on Biological Diversity for cataloguing the Earth''s biodiversity, identifying pathogens and monitoring endangered species. He expects that more law enforcement agencies around the world will routinely apply these tools: “This is actually easy technology to use.”In that way, barcoding as well as genetics and its related technologies help to address a major problem in conservation and protection measures: to monitor the size, distribution and migration of populations of animals and to analyse their genetic diversity. It gives biologists and conservations a better picture of what needs extra protective measures, and gives enforcement agencies a new and reliable forensic tool to identify and track illegal hunting and trade of protected species. As helpful as these technologies are, however, they are not sufficient to protect severely threatened species such as the bluefin tuna and are therefore not a substitute for more political action and stricter enforcement.  相似文献   

16.
Rinaldi A 《EMBO reports》2012,13(1):24-27
Does the spin of an electron allow birds to see the Earth''s magnetic field? Andrea Rinaldi investigates the influence of quantum events in the biological world.The subatomic world is nothing like the world that biologists study. Physicists have struggled for almost a century to understand the wave–particle duality of matter and energy, but many questions remain unanswered. That biological systems ultimately obey the rules of quantum mechanics might be self-evident, but the idea that those rules are the very basis of certain biological functions has needed 80 years of thought, research and development for evidence to begin to emerge (Sidebar A).

Sidebar A | Putting things in their place

Although Erwin Schrödinger (1887–1961) is often credited as the ‘father'' of quantum biology, owing to the publication of his famous 1944 book, What is Life?, the full picture is more complex. While other researchers were already moving towards these concepts in the 1920s, the German theoretical physicist Pascual Jordan (1902–1980) was actually one of the first to attempt to reconcile biological phenomena with the quantum revolution that Jordan himself, working with Max Born and Werner Heisenberg, largely ignited. “Pascual Jordan was one of many scientists at the time who were exploring biophysics in innovative ways. In some cases, his ideas have proven to be speculative or even fantastical. In others, however, his ideas have proven to be really ahead of their time,” explained Richard Beyler, a science historian at Portland State University, USA, who analysed Jordan''s contribution to the rise of quantum biology (Beyler, 1996). “I think this applies to Jordan''s work in quantum biology as well.”Beyler also remarked that some of the well-known figures of molecular biology''s past—Max Delbrück is a notable example—entered into their studies at least in part as a response or rejoinder to Jordan''s work. “Schrödinger''s book can also be read, on some level, as an indirect response to Jordan,” Beyler said.Jordan was certainly a complex personality and his case is rendered more complicated by the fact that he explicitly hitched his already speculative scientific theories to various right-wing political philosophies. “During the Nazi regime, for example, he promoted the notion that quantum biology served as evidence for the naturalness of dictatorship and the prospective death of liberal democracy,” Beyler commented. “After 1945, Jordan became a staunch Cold Warrior and saw in quantum biology a challenge to philosophical and political materialism. Needless to say, not all of his scientific colleagues appreciated these propagandistic endeavors.”Pascual Jordan [pictured above] and the dawn of quantum biology. From 1932, Jordan started to outline the new field''s background in a series of essays that were published in journals such as Naturwissenschaften. An exposition of quantum biology is also encountered in his book Die Physik und das Geheimnis des organischen Lebens, published in 1941. Photo courtesy of Luca Turin.Until very recently, it was not even possible to investigate whether quantum phenomena such as coherence and entanglement could play a significant role in the function of living organisms. As such, researchers were largely limited to computer simulations and theoretical experiments to explain their observations (see A quantum leap in biology, www.emboreports.org). Recently, however, quantum biologists have been making inroads into developing methodology to measure the degree of quantum entanglement in light-harvesting systems. Their breakthrough has turned once ephemeral theories into solid evidence, and has sparked the beginning of an entirely new discipline.How widespread is the direct relevance of quantum effects in nature is hard to say and many scientists suspect that there are only a few cases in which quantum mechanics have a crucial role. However, interest in the field is growing and researchers are looking for more examples of quantum-dependent biological systems. In a way, quantum biology can be viewed as a natural evolution of biophysics, moving from the classical to the quantum, from the atomic to the subatomic. Yet the discipline might prove to be an even more intimate and further-reaching marriage that could provide a deeper understanding of things such as protein energetics and dynamics, and all biological processes where electrons flow.Recently […] quantum biologists have been making inroads into developing methodology to measure the degree of quantum entanglement in light-harvesting systemsAmong the biological systems in which quantum effects are believed to have a crucial role is magnetoreception, although the nature of the receptors and the underlying biophysical mechanisms remain unknown. The possibility that organisms use a ferromagnetic material (magnetite) in some cases has received some confirmation, but support is growing for the explanation lying in a chemical detection mechanism with quantum mechanical properties. This explanation posits a chemical compass based on the light-triggered production of a radical pair—a pair of molecules each with an unpaired electron—the spins of which are entangled. If the products of the radical pair system are spin-dependent, then a magnetic field—like the geomagnetic one—that affects the direction of spin will alter the reaction products. The idea is that these reaction products affect the sensitivity of light sensors in the eye, thus allowing organisms to ‘see'' magnetic fields.The research comes from a team led by Thorsten Ritz at the University of California Irvine, USA, and other groups, who have suggested that the radical pair reaction takes place in the molecule cryptochrome. Cryptochromes are flavoprotein photoreceptors first identified in the model plant Arabidopsis thaliana, in which they play key roles in growth and development. More recently, cryptochromes have been found to have a role in the circadian clock of fruit flies (Ritz et al, 2010) and are known to be present in migratory birds. Intriguingly, magnetic fields have been shown to have an effect on both Arabidopsis seedlings, which respond as though they have been exposed to higher levels of blue light, and Drosophila, in which the period length of the clock is lengthened, mimicking the effect of increased blue light signal intensity on cryptochromes (Ahmad et al, 2007; Yoshii et al, 2009).“The study of quantum effects in biological systems is a rapidly broadening field of research in which intriguing phenomena are yet to be uncovered and understood”Direct evidence that cryptochrome is the avian magnetic compass is currently lacking, but the molecule does have some features that make its candidacy possible. In a recent review (Ritz et al, 2010), Ritz and colleagues discussed the mechanism by which cryptochrome might form radical pairs. They argued that “Cryptochromes are bound to a light-absorbing flavin cofactor (FAD) which can exist in three interconvertable [sic] redox forms: (FAD, FADH, FADH),” and that the redox state of FAD is light-dependent. As such, both the oxidation and reduction of the flavin have radical species as intermediates. “Therefore both forward and reverse reactions may involve the formation of radical pairs” (Ritz et al, 2010). Although speculative, the idea is that a magnetic field could alter the spin of the free electrons in the radical pairs resulting in altered photoreceptor responses that could be perceived by the organism. “Given the relatively short time from the first suggestion of cryptochrome as a magnetoreceptor in 2000, the amount of studies from different fields supporting the photo-magnetoreceptor and cryptochrome hypotheses […] is promising,” the authors concluded. “It suggests that we may be only one step away from a true smoking gun revealing the long-sought after molecular nature of receptors underlying the 6th sense and thus the solution of a great outstanding riddle of sensory biology.”Research into quantum effects in biology took off in 2007 with groundbreaking experiments from Graham Fleming''s group at the University of California, Berkeley, USA. Fleming''s team were able to develop tools that allowed them to excite the photosynthetic apparatus of the green sulphur bacterium Chlorobium tepidum with short laser pulses to demonstrate that wave-like energy transfer takes place through quantum coherence (Engel et al, 2007). Shortly after, Martin Plenio''s group at Ulm University in Germany and Alán Aspuru-Guzik''s team at Harvard University in the USA simultaneously provided evidence that it is a subtle interplay between quantum coherence and environmental noise that optimizes the performance of biological systems such as the photosynthetic machinery, adding further interest to the field (Plenio & Huelga, 2008; Rebentrost et al, 2009). “The recent Quantum Effects in Biological Systems (QuEBS) 2011 meeting in Ulm saw an increasing number of biological systems added to the group of biological processes in which quantum effects are suspected to play a crucial role,” commented Plenio, one of the workshop organizers; he mentioned the examples of avian magnetoreception and the role of phonon-assisted tunnelling to explain the function of the sense of smell (see below). “The study of quantum effects in biological systems is a rapidly broadening field of research in which intriguing phenomena are yet to be uncovered and understood,” he concluded.“The area of quantum effects in biology is very exciting because it is pushing the limits of quantum physics to a new scale,” Yasser Omar from the Technical University of Lisbon, Portugal commented. ”[W]e are finding that quantum coherence plays a significant role in the function of systems that we previously thought would be too large, too hot—working at physiological temperatures—and too complex to depend on quantum effects.”Another growing focus of quantum biologists is the sense of smell and odorant recognition. Mainstream researchers have always favoured a ‘lock-and-key'' mechanism to explain how organisms detect and distinguish different smells. In this case, the identification of odorant molecules relies on their specific shape to activate receptors on the surface of sensory neurons in the nasal epithelium. However, a small group of ‘heretics'' think that the smell of a molecule is actually determined by intramolecular vibrations, rather than by its shape. This, they say, explains why the shape theory has so far failed to explain why different molecules can have similar odours, while similar molecules can have dissimilar odours. It also goes some way to explaining how humans can manage with fewer than 400 smell receptors.…determining whether quantum effects have a role in odorant recognition has involved assessing the physical violations of such a mechanism […] and finding that, given certain biological parameters, there are noneA recent study in Proceedings of the National Academy of Sciences USA has now provided new grist for the mill for ‘vibrationists''. Researchers from the Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece—where the experiments were performed—and the Massachusetts Institute of Technology (MIT), USA, collaborated to replace hydrogen with deuterium in odorants such as acetophenone and 1-octanol, and asked whether Drosophila flies could distinguish the two isotopes, which are identically shaped but vibrate differently (Franco et al, 2011). Not only were the flies able to discriminate between the isotopic odorants, but when trained to discriminate against the normal or deuterated isotopes of a compound, they could also selectively avoid the corresponding isotope of a different odorant. The findings are inconsistent with a shape-only model for smell, the authors concluded, and suggest that flies can ‘smell molecular vibrations''.“The ability to detect heavy isotopes in a molecule by smell is a good test of shape and vibration theories: shape says it should be impossible, vibration says it should be doable,” explained Luca Turin from MIT, one of the study''s authors. Turin is a major proponent of the vibration theory and suggests that the transduction of molecular vibrations into receptor activation could be mediated by inelastic electron tunnelling (Fig 1; see also The scent of life, www.emboreports.org). “The results so far had been inconclusive and complicated by possible contamination of the test odorants with impurities,” Turin said. “Our work deals with impurities in a novel way, by asking flies whether the presence of deuterium isotope confers a common smell character to odorants, much in the way that the presence of -SH in a molecule makes it smell ‘sulphuraceous'', regardless of impurities. The flies'' answer seems to be ‘yes''.”Open in a separate windowFigure 1Diagram of a vibration-sensing receptor using an inelastic electron tunnelling mechanism. An odorant—here benzaldehyde—is depicted bound to a protein receptor that includes an electron donor site at the top left to which an electron—blue sphere—is bound. The electron can tunnel to an acceptor site at the bottom right while losing energy (vertical arrow) by exciting one or more vibrational modes of the benzaldehyde. When the electron reaches the acceptor, the signal is transduced via a G-protein mechanism, and the olfactory stimulus is triggered. Credit: Luca Turin.One of the study''s Greek co-authors, Efthimios Skoulakis, suggested that flies are better suited than humans at doing this experiment for a couple of reasons. “[The flies] seem to have better acuity than humans and they cannot anticipate the task they will be required to complete (as humans would), thus reducing bias in the outcome,” he said. “Drosophila does not need to detect deuterium per se to survive and be reproductively successful, so it is likely that detection of the vibrational difference between such a compound and its normal counterpart reflects a general property of olfactory systems.”The question of whether quantum mechanics really plays a non-trivial role in biology is still hotly debated by physicists and biologists alikeJennifer Brookes, a physicist at University College London, UK, explained that recent advances in determining whether quantum effects have a role in odorant recognition has involved assessing the physical violations of such a mechanism in the first instance, and finding that, given certain biological parameters, there are none. “The point being that if nature uses something like the quantized vibrations of molecules to ‘measure'' a smell then the idea is not—mathematically, physically and biologically—as eccentric as it at first seems,” she said. Moreover, there is the possibility that quantum mechanics could play a much broader role in biology than simply underpinning the sense of smell. “Odorants are not the only small molecules that interact unpredictably with large proteins; steroid hormones, anaesthetics and neurotransmitters, to name a few, are examples of ligands that interact specifically with special receptors to produce important biological processes,” Brookes wrote in a recent essay (Brookes, 2010).The question of whether quantum mechanics really plays a non-trivial role in biology is still hotly debated by physicists and biologists alike. “[A] non-trivial quantum effect in biology is one that would convince a biologist that they needed to take an advanced quantum mechanics course and learn about Hilbert space and operators etc., so that they could understand the effect,” argued theoretical quantum physicists Howard Wiseman and Jens Eisert in their contribution to the book Quantum Aspects of Life (Wiseman & Eisert, 2008). In their rational challenge to the general enthusiasm for a quantum revolution in biology, Wiseman and Eisert point out that a number of “exotic” and “implausible” quantum effects—including a quantum life principle, quantum computing in the brain, quantum computing in genetics, and quantum consciousness—have been suggested and warn researchers to be cautious of “ideas that are more appealing at first sight than they are realistic” (Wiseman & Eisert, 2008).“One could easily expect many more new exciting ideas and discoveries to emerge from the intersection of two major areas such as quantum physics and biology”Keeping this warning in mind, the view of life from a quantum perspective can still provide a deeper insight into the mechanisms that allow living organisms to thrive without succumbing to the increasing entropy of their environment. But does quantum biology have practical applications? “The investigation of the role of quantum physics in biology is fascinating because it could help explain why evolution has favoured some biological designs, as well as inspire us to develop more efficient artificial devices,” Omar said. The most often quoted examples of such devices are solar collectors that would use efficient energy transport mechanisms inspired by the quantum proficiency of natural light-harvesting systems, and quantum computing. But there is much more ahead. In 2010, the Pentagon''s cutting-edge research branch, DARPA (Defense Advanced Research Projects Agency, USA), launched a solicitation for innovative proposals in the area of quantum effects in a biological environment. “Proposed research should establish beyond any doubt that manifestly quantum effects occur in biology, and demonstrate through simulation proof-of-concept experiments that devices that exploit these effects could be developed into biomimetic sensors,” states the synopsis (DARPA, 2010). This programme will thus look explicitly at photosynthesis, magnetic field sensing and odour detection to lay the foundations for novel sensor technologies for military applications.Clearly a number of civil needs could also be fulfilled by quantum-based biosensors. Take, for example, the much sought-after ‘electronic nose'' that could replace the use of dogs to find drugs or explosives, or could assess food quality and safety. Such a device could even be used to detect cancer, as suggested by a recent publication from a Swedish team of researchers who reported that ovarian carcinomas emit a different array of volatile signals to normal tissue (Horvath et al, 2010). “Our goal is to be able to screen blood samples from apparently healthy women and so detect ovarian cancer at an early stage when it can still be cured,” said the study''s leading author György Horvath in a press release (University of Gothenburg, 2010).Despite its already long incubation time, quantum biology is still in its infancy but with an intriguing adolescence ahead. “A new wave of scientists are finding that quantum physics has the appropriate language and methods to solve many problems in biology, observing phenomena from a different point of view and developing new concepts. The next important steps are experimental verification/falsification,” Brookes said. “One could easily expect many more new exciting ideas and discoveries to emerge from the intersection of two major areas such as quantum physics and biology,” Omar concluded.  相似文献   

17.
18.
Philip Hunter 《EMBO reports》2008,9(12):1168-1171
Despite an increase in the demand for skilled workers, there is a lack of qualified science, engineering and technology graduatesFor the past few years, Germany''s export-oriented economy has undergone impressive growth as the demand for its engineering products has increased globally. However, although this development has driven down national unemployment, it has also resulted in a labour shortage that has German companies urgently looking for skilled workers and engineers: vacancies for engineers rose by nearly 30% in 2006. Last year, the German Ministry of Economy and Technology warned that the lack of workers could result in revenue losses of more than ¤20 billion per year (Bovensiepen, 2007).…rapidly developing nations, notably China and India, have been investing heavily in research and education to advance towards a knowledge-based economyGermany is not the only country faced with this problem. Across the European Union (EU), the lack of highly trained employees, coupled with the ongoing ‘brain drain'' of researchers to the USA, could stifle growth in high-tech industries (EC, 2007). Indeed, the EU estimates that the information sector alone could face a lack of up to 300,000 qualified staff by 2010 (EurActiv, 2007). The USA has been faring better, mainly owing to its ability to attract skilled workers from other nations and its demographic situation, but it has become highly dependent on immigrant labour; foreign students now earn about 30% of science doctorates and more than 50% of engineering doctorates in the USA (NSF, 2006). Moreover, rapidly developing nations, notably China and India, have been investing heavily in research and education to advance towards a knowledge-based economy.The result is an increased global demand and competition for workers in the science, engineering and technology sector. The only long-term solution to this problem—and to ensure growth in high-tech industries—is to increase the number of graduates in these areas and, more generally, to recruit more high-school and college students to science and engineering. However, any sustainable effort must address all stages of education, and tackle the cultural and public perceptions of science.With regard to the latter, engineering and the life sciences—particularly medicine—are faring better than physics or chemistry. Our natural interest in our health ensures that medical research remains popular and well funded, although this is sometimes done to the detriment of fundamental biological research, notably plant science or environmental research.Yet, even the life sciences have been suffering from a recruitment shortfall at the undergraduate level, particularly in the middle and lower ranks of student quality. “Often when people are complaining [about the decline in the standard of science graduates], they are referring to the rump in the middle,” commented Celia Knight, a plant biologist and Director of the undergraduate school at Leeds University in the UK. She argued that, although there are still plenty of outstanding students, factors such as grade inflation and rising student numbers are diluting the quality. “As we expand student numbers, we expect to expand the lower end,” she said. “It is clear there wasn''t a huge population of highly able students out there not going to university in the past.”The Norwegian-led ROSE (the Relevance Of Science Education) study, which measured the attitudes of school children to science in more than 20 countries, confirms this trend and highlights an additional gender gap in science recruitment (Sjøberg & Schreiner, 2007) that also appears at the top quality levels. “The most gifted students are not necessarily taking science—particularly girls,” said Sharmila Banerjee, National Coordinator for the Nuffield Science Bursary scheme in the UK.The quality problem, if the perennial comments of senior scientists are to be believed, is increasingly apparent as biology becomes more analytical and quantitative: the lack of basic mathematical and statistical knowledge among students becomes more obvious. But, as Jonathan Osborne, Professor of Science Education at King''s College, London, UK, insisted, this does not represent the whole story. A lack of knowledge in some fundamental areas might, he argued, be compensated for by the student''s broader grasp of the field. “Today''s youngsters may not, say, be taught about cosines in the same way [that] we were,” he said, “but they have different skills instead that we did not have [...] What people focus on too much is what people cannot do rather than what they can do.”But Osborne was far from suggesting that all is right with science education. He recently co-authored the report Science Education in Europe: Critical Reflections (Osborne & Dillon, 2008), which was published for the Nuffield Foundation (London, UK) in January 2008. In the report, Osborne and co-author Justin Dillon, President of the European Science Education Research Association (ESERA), advocated sweeping changes to the high-school science curricula across Europe. The report reflects the concerns of the Nuffield Foundation that science teaching is losing the battle for hearts and minds by placing too much emphasis on learning by rote. “The main changes needed are to make teachers of science realise that the main achievement of science is the explanatory theories that it offers of the material world and that a miscellany of facts is not the same thing,” Osborne said. “There is a need to provide a science education where the connections to students'' lives are more evident and where there is space to discuss the issues raised by science.”Open in a separate window© Image Source/CorbisKnight noted that the current science curriculum is also losing touch with the requirements of universities. As she pointed out, universities used to set the A-level exams—the final qualifications of the UK secondary school system taken at age 18—but now have minimal influence over them. This has led, she feels, towards too much medicine and human biology in the syllabus, often at the expense of other fields such as plant biology. Yet, despite its partial omission from the science curriculum, plant biology itself is becoming increasingly relevant to society, particularly in the light of recent global food shortages and the drive towards solar energy conversion by using genetically engineered plants or artificial photosynthesis.Osborne agreed that universities should not regain their old monopoly on setting exams, but emphasized that the current syllabus serves nobody, least of all those who plan to pursue a career in science. This, he pointed out, is why many universities in the UK and elsewhere are now considering setting their own entrance exams. “The reason is that the people who set the A-level exams are failing to write exams which discriminate and test understanding, rather than the ability to regurgitate information or follow algorithmic procedures,” he said. “In its worst incarnation, somebody once described this as ‘bulimic science education''—that is, you are fed a lot of indigestible facts which have no nutritional value and you instantly regurgitate.”To address this trend, Newcastle University in the UK is pursuing an approach that introduces university-style education into the school curriculum and allows some students to bypass the A-level school exams altogether. A school local to the university, Monkseaton High School, initiated the scheme to provide an alternative route to university in the belief that some good students are deterred by traditional exams, which emphasize analytical skills and fact retention. Instead, students at Monkseaton can now take a science module at the Open University (OU; Milton Keynes, UK)—a distance-learning institution that allows degrees to be taken part time and mostly remotely. Newcastle University has agreed to accept undergraduate students from Monkseaton who have taken the OU module.“We do not see this route as an easy route, nor is it a statement that A-levels are not appropriate as preparation for university,” explained Heather Finlayson, Head of the School of Biology at Newcastle University. “The pilot was developed to try to encourage greater participation in science beyond GCSE level [the exams taken at age 16 at the end of compulsory secondary education in the UK]. We believe that the students entering by the OU route will have a broader but less deep knowledge in some subject areas, but their independent study skills, developed while studying the OU modules, will enable them to study effectively and rapidly to make up any lack of specific subject knowledge.”Some educators, however, are sceptical of how much difference systemic changes can make to the overall appeal of science. “We have had so many curriculum innovations, implemented in a top-down manner, that did not bring what was expected,” said Jan Van Driel, a professor at the Leiden University Graduate School of Teaching in the Netherlands. “I would argue that, in general, science should be taught in a way that makes sense—that is comprehensible and relevant—to the specific target group, and this is primarily the responsibility of science teachers. What we need is highly qualified and motivated science teachers, rather than another curriculum reform movement.”…tests are poor predictors of which students will be academic failures, because a significant number of students will become solid achievers despite poor scores on entrance exams…Van Driel was also sceptical of any trend that distances teachers from students, as could happen with a more university-like approach. “In our country, unfortunately, a belief seems to exist that students should work on their own, or in small groups, using computers, or doing practical work. In this context, the role of the teacher has been undervalued,” he said. But, having school students involved in practical work, which could still be administered by universities, would be likely to stimulate their interest, he added. “For talented students in secondary education, in our country, we have had very positive experiences with extra-curricular activities, where students participate in university courses and are given opportunities to engage in research activities.”Van Driel argued that science education should not wait until secondary school when children might have veered towards other subjects or developed negative views of science. “In our country, science teaching at the primary level has been undeservedly ignored. This is mainly due, as in many countries, to teachers not being qualified and motivated to teach science,” he commented. “Recently, we have begun to invest in this issue, on the one hand in projects aimed at stimulating young children to engage in inquiry activities and science projects, and the other hand in projects aiming at professional development of primary teachers. I think that, potentially, this is a very important development when it comes to making science more popular and better understood in our society.”The US Government has also taken up the idea that science teaching needs to be improved. In July 2008, Congress approved the US$40 million Robert Noyce Teacher Scholarship Programme to prepare science and maths teachers for selected schools. “We are also implementing the new Section 10A of the America COMPETES Act, which provides a good stipend to support a mid-career STEM [Science, Technology, Engineering and Maths] professional while they get a Master''s in teaching and then provides a salary supplement,” said Myles Boylan, Lead Program Director for Course, Curriculum and Laboratory Improvement at the US National Science Foundation (NSF; Arlington, VA, USA). “It is expected that as these teachers move into high need schools, the quality of instruction in maths and science will improve and that more high school graduates will go to college and major in STEM.”The USA is also considering offering students alternatives to traditional university exams—similar to the Newcastle University model—as Boylan explained: “I think the traditional exams are pretty good predictors of which students will be high performing and likely to graduate. But I also believe that these tests are poor predictors of which students will be academic failures, because a significant number of students will become solid achievers despite poor scores on entrance exams,” he said, but insisted that this was not tantamount to ‘dumbing down'' the system. “Many students are still quite immature at age 17 when they take these tests and thus can make spectacular gains in learning as they finally ‘grow up'' […] I believe the right approach is to give students multiple chances to succeed.”This chimes with the findings of a 2007 report by the Urban Institute, a US non-profit group in Washington, DC, which collects data and provides advice on science policy and education questions. The report suggests that the USA should no longer compete on the basis of scores in science and maths tests, but instead on creativity within the context of a more broadly based education (Lowell & Salzman, 2007).The main challenge therefore goes beyond improving science education; there is also a serious need to counter the misleading perception that science is in opposition to conservation or sustainable developmentYet, Banerjee suggested that educational reforms alone might not be sufficient to improve recruitment to science. She referred to the ROSE study, which found that a student''s response to the statement “I like school science better than other subjects” was more likely to be negative the more developed their country (Sjøberg & Schreiner, 2007). Banerjee commented that this might just reflect the increased range of choices that students have in these countries, but it could also result from a negative perception of science, as portrayed in the media or by the environmental lobby. The main challenge therefore goes beyond improving science education; there is also a serious need to counter the misleading perception that science is in opposition to conservation or sustainable development.But, there is cause for some optimism in the UK, at least, where the Higher Education Funding Council for England announced in October 2008 that its £350 million six-year programme to increase the number of science students was now working. In the academic year 2007/2008, the number of entries to chemistry courses, a subject that had been in decline, was up by 5.3%; a clear sign that trends can be, and are being, reversed in some countries. Despite this success, however, much more still needs to be done to counter negative cultural perceptions and to attract more women.Moreover, much more needs to be done to ensure that there are sufficient lucrative and attractive jobs for science graduates. The Urban Institute''s 2007 report therefore suggests that leading countries like the USA need to rethink their approach to science education, as they produce large numbers of students with bachelor''s and master''s degrees but fail to keep them interested in these areas. As the study said: “One to two years after graduation, 20 percent of S&E [science and engineering] bachelors are in school but not in S&E studies, while another 45 percent are working but in non-S&E employment (total attrition of 65 percent). One to two years after graduation, 7 percent of S&E master''s graduates are enrolled in school but not in S&E studies, while another 31 percent are working but in non-S&E employment” (Lowell & Salzman, 2007).Indeed, the chance of finding an interesting and well-paid job after graduation seems to be a main factor in solving the problem of recruitment, notwithstanding attitudes or perceptions. The economic boom and the ensuing competition for qualified engineers among German companies in the past few years—although times are now less certain—markedly improved the attractiveness of engineering fields to undergraduates. This year, German universities reported that the number of students enrolling in engineering fields rose by up to 16% for the fall semester (Anon, 2008).  相似文献   

19.
Wolinsky H 《EMBO reports》2011,12(9):897-900
Our knowledge of the importance of telomeres to health and ageing continues to grow. Some scientists are therefore commercializing their research, whereas others believe we need an even deeper understanding before we can interpret the results.After 30 years of research, the analysis of telomere length is emerging as a commercial biomarker for ageing and disease, as well as a tool in the search for new medications. Several companies offer tests for telomere length, and more are due to launch their products shortly. Even so, and despite the commercial enthusiasm, interpreting precisely what an individual''s telomeres mean for their health and longevity remains challenging. As a result, there is some division within the research community between those who are pushing ahead with ventures to offer tests to the public, and those who feel that telomere testing is not yet ready for prime time.Peter Lansdorp, a scientist at the British Columbia Cancer Agency and a professor at the University of British Columbia (Vancouver, Canada), founded his company, Repeat Diagnostics, in response to the number of questions and requests he received from physicians for tests for telomere length. The company became the first to offer commercial telomere testing in 2005 and now mainly serves medical researchers, although it makes its test available to the public through their physicians for C $400. Nevertheless, Lansdorp thinks that testing is of limited use for the public. “Testing [...] outside the context of research studies is in my view premature. Unfortunately I think some scientists are exploiting it,” he said. “At this point, I would discourage people from getting their telomeres tested unless there are symptoms in the family that may point to a telomere problem, or a disease related to a telomere problem. I don''t see why on Earth you would want to do that for normal individuals.”“Testing [...] outside the context of research studies is in my view premature. Unfortunately I think some scientists are exploiting it”Others are more convinced of the general utility of telomere tests, when used in combination with other diagnostic tools. Elizabeth Blackburn, Professor of Biology and Physiology at the University of California (San Francisco, USA), was a co-recipient of the Nobel Prize for Physiology or Medicine in 2009 for her part in the discovery of telomerase, the enzyme that replenishes telomeres (Sidebar A). She stressed that the point of telomere testing is to obtain an overall picture using a marker that integrates many inputs, and produces a robust statistical association with [...] disease risks. It is not a specific diagnostic.” Telome Health, Inc. (Menlo Park, California, USA)—the company that Blackburn helped found and that she now advises in a scientific capacity—plans to begin selling its own US $200 telomere test later this year. “The science has been emerging at a rapid pace recently [...] for those who are familiar with the wealth of the evidence and the accumulated data, the overwhelming pattern is that there are clear associations with telomere maintenance, including longitudinal patterns, and health measures that have had well-tested clinical relevance,” she explained.

Sidebar A | Telomeres and telomerase

Telomeres are regions of repetitive DNA sequence that prevent the DNA replication process or damage from degrading the ends of chromosomes, essentially acting as buffers and protecting the genes closest to the chromosome ends. Russian biologist Alexei Olovnikov first hypothesized in the early 1970s that chromosomes could not completely replicate their ends, and that such losses could ultimately lead to the end of cell division (Olovnikov, 1973). Some years later, Elizabeth Blackburn, then a postdoctoral fellow in Joseph Gall''s lab at Yale University (New Haven, Connecticut, USA), and her colleagues published work suggesting that telomere shortening was linked with ageing at the cellular level, affected lifespan and could lead to cancer (Blackburn & Gall, 1978; Szostak & Blackburn, 1982). In 1984, Carol Greider, working as a postdoc in Blackburn''s lab at the University of California (Berkeley, USA), discovered telomerase, the enzyme that replenishes telomeres. Blackburn and Greider, together with Jack Szostak, were awarded the 2009 Nobel Prize in Physiology or Medicine for “the discovery of how chromosomes are protected by telomeres and the enzyme telomerase” (http://nobelprize.org/nobel_prizes/medicine/laureates/2009/).María Blasco, Director of the Centro Nacional de Investigaciones Oncológicas (CNIO; Spanish National Cancer Research Centre; Madrid, Spain), is similarly optimistic about the prospect of telomere testing becoming a routine health test. “As an analogy, telomere length testing could be similar to what has occurred with cholesterol tests, which went in [the] early 80s from being an expensive test for which no direct drug treatment was available to being a routine test in general health check-ups,” she said.Carol Greider, Professor and Director of Molecular Biology and Genetics at Johns Hopkins University (Baltimore, Maryland, USA) and co-recipient of the 2009 Nobel Prize with Blackburn, however, does not believe that testing is ready for widespread use, although she agreed that telomere length can reveal a lot about disease and is an important subject for research. “Certainly, right now, I think it''s very premature to be offering this kind of testing to the public. I don''t think that the research has yet told us about the risks, what we can actually say statistically with high confidence, so it''s unclear to me if there is any real value to the general public to testing telomeres,” she said.Blasco is Chief Scientific Advisor to Life Length, a CNIO spin-off company that launched its test last year to a storm of media attention. “For some scientists, there is always a question that needs to be solved or has not been sufficiently evaluated,” she said. “We have lots of information showing that telomere length is important for understanding ageing and certain diseases [...] New technologies have been developed that allow us now to measure telomere length in a large scale using a simple blood sample or a spit sample. The fact that the technology is here and the science is here makes this a good moment to market this testing.”“We have lots of information showing that telomere length is important for understanding ageing and certain diseases [...] the technology is here and the science is here”Apart from discussion of the science, companies that offer telomere testing are also encountering scepticism from ethicists and other scientists about the value of telomere-length testing for normal healthy people.Lansdorp, who is a medical doctor by training, thinks that practitioners are not yet ready to use and interpret the tests. “It''s a new field and there are good clinical papers out there, but the irony is that our work [that] has highlighted the value of these tests for specific clinical conditions [is] now being used [...] to make the point that it''s really important to have your telomeres tested, but the dots are not connected by a straight line,” he said.Jonathan Stein, Director of Science and Research at SpectraCell Laboratories (Houston, Texas, USA)—which offers its US $250 telomere test as an extension of its nutritional product line that is sold to family physicians, chiropractors and naturopaths—said that there has only really been demand for the telomere test from his company among physicians and their spouses, but not for use in the clinic. “Doctors are incredibly curious about [the test] and then when we do follow-ups in general, they tell us it''s interesting and they know it''s valuable, but they''re not entirely sure what it means to people. Where we go from the bench to bedside, there seems to be a real sticking point,” he said, adding that he thinks demand will increase as the public becomes increasingly educated about telomeres and health.Arthur Caplan, Professor of Bioethics and Director of the Center for Bioethics at the University of Pennsylvania (Philadelphia, USA), is not clear that even an educated public will be interested in what the test can tell them. “We don''t have any great reason to think that people will be interested in knowing facts about themselves [...] if they can''t do anything about it. I think most people would say ''I''m not going to spend money on this until you tell me if there''s something I can do to slow this process or expand my life''.” As such, he thinks that companies that are getting in early to ''cash in'' on the novelty of telomere testing are unlikely to see huge success, partly because the science is not yet settled.Calvin Harley, President and Chief Science Officer at Telome Health, disagrees. He thinks that two things will drive demand for telomere testing: the growing number of clinical studies validating the utility of the test, and the growing interest in lifestyle changes and interventions that help to maintain telomeres....two things will drive demand for telomere testing: the growing number of clinical studies [...] and [...] interest in lifestyle changes and interventions that help maintain telomeresBut these are early days. Jerry Shay, Professor of Cell Biology and Neuroscience at the University of Texas Southwestern Medical Center (Dallas, USA) and an adviser to the company Life Length, said that early adopters are likely to be the health conscious and the curious. “Some people will say, ''Well, look, I had my telomeres measured: I''m a 60 year old with 50-year-old telomeres'',” he explained. “It will have ''My telomeres are longer than your telomeres'' type of cocktail talk appeal. That''s fine. I have no problem with that as long as we can follow this sort of population and individuals over decades.”“It will have ''My telomeres are longer than your telomeres'' type of cocktail talk appeal [...] I have no problem with that as long as we can follow this sort of population and individuals...”Shay''s last point is the key—research and data collection. Even those commercializing telomere-length tests agree that our understanding of telomere biology, although extensive, is incomplete and that we have yet to unpick fully the links between telomeres and disease. Stefan Kiechl, a telomere researcher in the Department of Neurology at Innsbruck Medical University (Austria), published an article last year on telomere length and cancer (Willeit et al, 2010). “The appealing thing with telomere length measurements is that they allow the estimation of the biological—in contrast to the chronological—age of an organism. This was previously not possible. Moreover, long telomere length has been linked with a low risk of advanced atherosclerosis, cardiovascular disease and cancer, and, vice versa, short telomere length is associated with a higher risk of these diseases.”But, he said that problems remain to be resolved, such as whether telomere length can only be measured in cells that are readily available, such as leukocytes, and whether telomere length in leukocytes varies substantially from telomere length in other tissues and cells. “Moreover, there is still insufficient knowledge on which lifestyle behaviours and other factors affect telomere length,” he concluded.This might be a bumpy road. When Life Length announced its launch in May, newspapers carried headlines such as ''The £400 test that tells you how long you''ll live'', reporting: “A blood test that can show how fast someone is ageing—and offers the tantalizing possibility of estimating how long they have left to live—is to go on sale to the general public in Britain later this year” (Connor, 2011).The story was catchy, but Life Length officials are determined to explain that, despite the name of the company, its tests do not predict longevity for individuals. Blasco said that the word ''life'' in the name is meant as an analogy between telomeres and life. “A British newspaper chose to use this headline, but the company name has no intention to predict longevity,” she said. Instead, the name refers to extensive research correlating the shortened chromosome tips with the risk for certain diseases and personal habits, such as smoking, obesity, lack of exercise and stress, Blasco explained.Life Length''s test measures the abundance of short telomeres, as they claim that there is genetic evidence that short telomeres are the ones that are relevant to disease. “The preliminary results are exciting: we are observing that the percent of short telomeres with increasing age is more divergent between individuals than average telomere length for the same group of individuals,” Blasco explained. “This is exactly what you would expect from a parameter [abundance of short telomeres] that reflects the effects of environmental factors and lifestyle on people''s telomeres.” She noted that being in a lower quartile of average telomere length and the higher quartile of abundance of short telomeres would indicate that telomeres are shorter than normal for a given age, which has been correlated with a higher risk of developing certain diseases.So, what can be done about an abundance of short telomeres? Lansdorp said that, as a physician, he would be hard pressed to know what to tell patients to do about it. “The best measure of someone''s age and life expectancy is the date on their birth certificate. Telomere length, as a biomarker, shows a clear correlation with age at the population level. For an individual the value of telomere length is very limited,” he said. “I suspect there''s going to be a lot of false alarms based on biological variation as well as measurement errors using these less accurate tests.”“The best measure of someone''s age and life expectancy is the date on their birth certificate. [...] For an individual the value of telomere length is very limited”Harley, however, said that if telomere length were perfectly correlated with age, it would be a useless biomarker, except for in forensic work. “The differences in telomere length between individuals at any given age is where the utility lies [...] people with shorter telomeres are at higher risk for morbidity and mortality. In addition, there is emerging data suggesting that people with shorter telomeres respond differently to certain drugs than people with longer telomeres. This fits into the paradigm of personalized medicine,” he said....if telomere length were perfectly correlated with age, it would be a useless biomarker, except for in forensic workWhile he was at Geron Corporation, Harley was the lead discoverer of telomerase activators purified from the root of Astragalus membranaceus. Harley, Blasco and colleagues have published two peer-reviewed papers on one of those molecules, TA-65—one in humans and the other in mice (de Jesus et al, 2011; Harley et al, 2011). Both showed positive effects on certain health measures, and Blasco''s lab found that mice treated with TA-65 had improved health status compared with those given a placebo. “However, we did not see significant effects on longevity,” Blasco said.In the meantime, researchers are squabbling about the techniques used by the testing companies. Greider maintains that Flow-FISH (fluorescence in situ hybridization), which was developed by Lansdorp, is the gold standard used by clinical researchers and that it is the most reliable technique. Harley argues that the quantitative real-time (qRT)-PCR assay developed by the Blackburn lab is just as reliable, and easier to scale-up for commercial use. Blasco pointed out that, similarly to its rivals, the qFISH used by Life Length offers measurements of average telomere length, but that it is the only company to report the percentage of short telomeres in individual cells. In the end, Lansdorp suggested that the errors inherent in the tests, along with biological variations and cost, should give healthy people pause for thought about being tested.Ultimately, whichever test for telomere length is used and whatever the results can tell us about longevity and health, it is unlikely that manipulating telomere length will unlock the fountain of youth, à la Spanish explorer Juan Ponce de León y Figueroa (1474–1521). Nevertheless, telomere testing could become a key diagnostic tool for getting a few more years out of life, and it could motivate people to follow healthier lifestyles. As Kiechl pointed out, “[t]here is convincing evidence that calculation of an individual''s risk of cardiovascular disease [...] substantially enhances compliance for taking medicines and the willingness to change lifestyle. Knowing one''s biological age may well have similar favourable effects.”  相似文献   

20.
Lipid rafts make for slippery platforms   总被引:14,自引:0,他引:14  
What''s in a raft? Although cell membranes are certainly not homogeneous mixtures of lipids and proteins, almost all aspects of lipid rafts—how to define them, their size, composition, lifetime, and biological relevance—remain controversial. The answers will shape our views of signaling and of membrane dynamics.In the influential “fluid mosaic” model of Singer and Nicolson, a “mosaic” of integral transmembrane proteins floats about in a “fluid” sea of lipids (Singer and Nicolson, 1972). More recently, researchers have shifted to a view in which membrane lipids are not randomly distributed, but instead show local heterogeneity. One might imagine this as a two-dimensional projection of a lava lamp, with different types of greasy globules in constant motion, endlessly separating and rejoining into distinct but transient domains. These domains are now referred to under the general heading of lipid rafts and domains, a subset of which are the morphologically identifiable “caveolae.”The study of lipid domains has exploded since the debut of the “raft hypothesis” only about fifteen years ago. This torrent of research notwithstanding, there remains heated discussion concerning matters as fundamental as what lipid domains look like—a discussion that peaked but reached little in the way of resolution at a recent conference (Euroconference on Microdomains, Lipid Rafts, and Caveolae; Tomar, Portugal, May 17–22, 2003). Regardless of their actual form, evidence is mounting that lipid rafts are essential participants in signal transduction, membrane and protein sorting, and the pathogenesis of several human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号