共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutational burden of acral melanoma revealed by whole‐genome sequencing and comparative analysis
Gordon Stamp J. Meirion Thomas Andrew Hayes Dirk Strauss Mike Gavrielides Wei Xing Martin Gore James Larkin Richard Marais 《Pigment cell & melanoma research》2014,27(5):835-838
Acral melanoma is a subtype of melanoma with distinct epidemiological, clinical and mutational profiles. To define the genomic alterations in acral melanoma, we conducted whole‐genome sequencing and SNP array analysis of five metastatic tumours and their matched normal genomes. We identified the somatic mutations, copy number alterations and structural variants in these tumours and combined our data with published studies to identify recurrently mutated genes likely to be the drivers of acral melanomagenesis. We compared and contrasted the genomic landscapes of acral, mucosal, uveal and common cutaneous melanoma to reveal the distinctive mutational characteristics of each subtype. 相似文献
2.
V. Jagannathan V. Gerber S. Rieder J. Tetens G. Thaller C. Drgemüller T. Leeb 《Animal genetics》2019,50(1):74-77
Whole‐genome sequencing studies are vital to gain a thorough understanding of genomic variation. Here, we summarize the results of a whole‐genome sequencing study comprising 88 horses and ponies from diverse breeds at 19.1× average coverage. The paired‐end reads were mapped to the current EquCab3.0 horse reference genome assembly, and we identified approximately 23.5 million single nucleotide variants and 2.3 million short indel variants. Our dataset included at least 7 million variants that were not previously reported. On average, each individual horse genome carried ~5.7 million single nucleotides and 0.8 million small indel variants with respect to the reference genome assembly. The variants were functionally annotated. We provide two examples for potentially deleterious recessive alleles that were identified in a heterozygous state in individual genome sequences. Appropriate management of such deleterious recessive alleles in horse breeding programs should help to improve fertility and reduce the prevalence of heritable diseases. This comprehensive dataset has been made publicly available, will represent a valuable resource for future horse genetic studies and supports the goal of accelerating the rates of genetic gain in domestic horse. 相似文献
3.
Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole‐genome sequencing approach 下载免费PDF全文
P.H.N. Panzenhagen C.C. Cabral P.N. Suffys R.M. Franco D.P. Rodrigues C.A. Conte‐Junior 《Letters in applied microbiology》2018,66(4):352-359
4.
Chromosomal inversions and ecotypic differentiation in Anopheles gambiae: the perspective from whole‐genome sequencing 下载免费PDF全文
R. Rebecca Love Aaron M. Steele Mamadou B. Coulibaly Sékou F. Traore Scott J. Emrich Nora J. Besansky 《Molecular ecology》2016,25(23):5889-5906
The molecular mechanisms and genetic architecture that facilitate adaptive radiation of lineages remain elusive. Polymorphic chromosomal inversions, due to their recombination‐reducing effect, are proposed instruments of ecotypic differentiation. Here, we study an ecologically diversifying lineage of Anopheles gambiae, known as the Bamako chromosomal form based on its unique complement of three chromosomal inversions, to explore the impact of these inversions on ecotypic differentiation. We used pooled and individual genome sequencing of Bamako, typical (non‐Bamako) An. gambiae and the sister species Anopheles coluzzii to investigate evolutionary relationships and genomewide patterns of nucleotide diversity and differentiation among lineages. Despite extensive shared polymorphism and limited differentiation from the other taxa, Bamako clusters apart from the other taxa, and forms a maximally supported clade in neighbour‐joining trees based on whole‐genome data (including inversions) or solely on collinear regions. Nevertheless, FST outlier analysis reveals that the majority of differentiated regions between Bamako and typical An. gambiae are located inside chromosomal inversions, consistent with their role in the ecological isolation of Bamako. Exceptionally differentiated genomic regions were enriched for genes implicated in nervous system development and signalling. Candidate genes associated with a selective sweep unique to Bamako contain substitutions not observed in sympatric samples of the other taxa, and several insecticide resistance gene alleles shared between Bamako and other taxa segregate at sharply different frequencies in these samples. Bamako represents a useful window into the initial stages of ecological and genomic differentiation from sympatric populations in this important group of malaria vectors. 相似文献
5.
Demographic inference from whole‐genome and RAD sequencing data suggests alternating human impacts on goose populations since the last ice age 下载免费PDF全文
We investigated how population changes and fluctuations in the pink‐footed goose might have been affected by climatic and anthropogenic factors. First, genomic data confirmed the existence of two separate populations: western (Iceland) and eastern (Svalbard/Denmark). Second, demographic inference suggests that the species survived the last glacial period as a single ancestral population with a low population size (100–1,000 individuals) that split into the current populations at the end of the last glacial maximum with Iceland being the most plausible glacial refuge. While population changes during the last glaciation were clearly environmental, we hypothesize that more recent demographic changes are human‐related: (1) the inferred population increase in the Neolithic is due to deforestation to establish new lands for agriculture, increasing available habitat for pink‐footed geese, (2) the decline inferred during the Middle Ages is due to human persecution, and (3) improved protection explains the increasing demographic trends during the 20th century. Our results suggest both environmental (during glacial cycles) and anthropogenic effects (more recent) can be a threat to species survival. 相似文献
6.
A survey of single nucleotide polymorphisms identified from whole‐genome sequencing and their functional effect in the porcine genome, 下载免费PDF全文
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole‐genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire–Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss‐of‐function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss‐of‐function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. 相似文献
7.
Standardized phylogeographic studies across codistributed taxa can identify important refugia and biogeographic barriers, and potentially uncover how changes in adaptive constraints through space and time impact on the distribution of genetic diversity. The combination of next‐generation sequencing and methodologies that enable uncomplicated analysis of the full chloroplast genome may provide an invaluable resource for such studies. Here, we assess the potential of a shotgun‐based method across twelve nonmodel rainforest trees sampled from two evolutionary distinct regions. Whole genomic shotgun sequencing libraries consisting of pooled individuals were used to assemble species‐specific chloroplast references (in silicio). For each species, the pooled libraries allowed for the detection of variation within and between data sets (each representing a geographic region). The potential use of nuclear rDNA as an additional marker from the NGS libraries was investigated by mapping reads against available references. We successfully obtained phylogeographically informative sequence data from a range of previously unstudied rainforest trees. Greater levels of diversity were found in northern refugial rainforests than in southern expansion areas. The genetic signatures of varying evolutionary histories were detected, and interesting associative patterns between functional characteristics and genetic diversity were identified. This approach can suit a wide range of landscape‐level studies. As the key laboratory‐based steps do not require prior species‐specific knowledge and can be easily outsourced, the techniques described here are even suitable for researchers without access to wet‐laboratory facilities, making evolutionary ecology questions increasingly accessible to the research community. 相似文献
8.
Signatures of local adaptation in lowland and highland teosintes from whole‐genome sequencing of pooled samples 下载免费PDF全文
M.‐A. Fustier J.‐T. Brandenburg S. Boitard J. Lapeyronnie L. E. Eguiarte Y. Vigouroux D. Manicacci M. I. Tenaillon 《Molecular ecology》2017,26(10):2738-2756
Spatially varying selection triggers differential adaptation of local populations. Here, we mined the determinants of local adaptation at the genomewide scale in the two closest maize wild relatives, the teosintes Zea mays ssp parviglumis and ssp. mexicana. We sequenced 120 individuals from six populations: two lowland, two intermediate and two highland populations sampled along two altitudinal gradients. We detected 8 479 581 single nucleotide polymorphisms (SNPs) covered in the six populations with an average sequencing depth per site per population ranging from 17.0× to 32.2×. Population diversity varied from 0.10 to 0.15, and linkage disequilibrium decayed very rapidly. We combined two differentiation‐based methods, and correlation of allele frequencies with environmental variables to detect outlier SNPs. Outlier SNPs displayed significant clustering. From clusters, we identified 47 candidate regions. We further modified a haplotype‐based method to incorporate genotype uncertainties in haplotype calling, and applied it to candidate regions. We retrieved evidence for selection at the haplotype level in 53% of our candidate regions, and in 70% of the cases the same haplotype was selected in the two lowland or the two highland populations. We recovered a candidate region located within a previously characterized inversion on chromosome 1. We found evidence of a soft sweep at a locus involved in leaf macrohair variation. Finally, our results revealed frequent colocalization between our candidate regions and loci involved in the variation of traits associated with plant–soil interactions such as root morphology, aluminium and low phosphorus tolerance. Soil therefore appears to be a major driver of local adaptation in teosintes. 相似文献
9.
Induction and recovery of copy number variation in banana through gamma irradiation and low‐coverage whole‐genome sequencing 下载免费PDF全文
Traditional breeding methods are hindered in bananas due to the fact that major cultivars are sterile, parthenocarpic, triploid and thus clonally propagated. This has resulted in a narrow genetic base and limited resilience to biotic and abiotic stresses. Mutagenesis of in vitro propagated bananas is one method to introduce novel alleles and broaden genetic diversity. We previously established a method for the induction and recovery of single nucleotide mutations generated with the chemical mutagen EMS. However, officially released mutant banana varieties have been created using gamma rays, a mutagen that can produce large genomic insertions and deletions (indels). Such dosage mutations may be important for generating observable phenotypes in polyploids. In this study, we establish a low‐coverage whole‐genome sequencing approach in triploid bananas to recover large genomic indels caused by treatment with gamma irradiation. We first evaluated the commercially released mutant cultivar ‘Novaria’ and found that it harbours multiple predicted deletions, ranging from 0.3 to 3.8 million base pairs (Mbp). In total, predicted deletions span 189 coding regions. To evaluate the feasibility of generating and maintaining new mutations, we developed a pipeline for mutagenesis and screening for copy number variation in Cavendish bananas using the cultivar ‘Williams’. Putative mutations were recovered in 70% of lines treated with 20 Gy and 60% of the lines treated with 40 Gy. While deletion events predominate, insertions were identified in 20 Gy‐treated material. Based on these results, we believe this approach can be scaled up to support large breeding projects. 相似文献
10.
Tian An Jing Zhang Yu‐Fei Liu Yan‐Xiang Wu Juan Lian Ting‐Ye Wang Yuan‐yuan Hu Jia‐jian Zhu Jiangpinghao Huang Dan‐Dan Zhao Fang‐Fang Mo Si‐Hua Gao Guang‐Jian Jiang 《Journal of cellular and molecular medicine》2020,24(4):2451-2463
This study sought to find more exon mutation sites and lncRNA candidates associated with type 2 diabetes mellitus (T2DM) patients with obesity (O‐T2DM). We used O‐T2DM patients and healthy individuals to detect mutations in their peripheral blood by whole‐exon sequencing. And changes in lncRNA expression caused by mutation sites were studied at the RNA level. Then, we performed GO analysis and KEGG pathway analysis. We found a total of 277 377 mutation sites between O‐T2DM and healthy individuals. Then, we performed a DNA‐RNA joint analysis. Based on the screening of harmful sites, 30 mutant genes shared in O‐T2DM patients were screened. At the RNA level, mutations of 106 differentially expressed genes were displayed. Finally, a consensus mutation site and differential expression consensus gene screening were performed. In the current study, the results revealed significant differences in exon sites in peripheral blood between O‐T2DM and healthy individuals, which may play an important role in the pathogenesis of O‐T2DM by affecting the expression of the corresponding lncRNA. This study provides clues to the molecular mechanisms of metabolic disorders in O‐T2DM patients at the DNA and RNA levels, as well as biomarkers of the risk of these disorders. 相似文献
11.
Saulo Alves Aflitos Gabino Sanchez‐Perez Dick de Ridder Paul Fransz Michael E. Schranz Hans de Jong Sander A. Peters 《The Plant journal : for cell and molecular biology》2015,82(1):174-182
Breeding by introgressive hybridization is a pivotal strategy to broaden the genetic basis of crops. Usually, the desired traits are monitored in consecutive crossing generations by marker‐assisted selection, but their analyses fail in chromosome regions where crossover recombinants are rare or not viable. Here, we present the Introgression Browser (iBrowser ), a bioinformatics tool aimed at visualizing introgressions at nucleotide or SNP (Single Nucleotide Polymorphisms) accuracy. The software selects homozygous SNPs from Variant Call Format (VCF) information and filters out heterozygous SNPs, multi‐nucleotide polymorphisms (MNPs) and insertion–deletions (InDels). For data analysis iBrowser makes use of sliding windows, but if needed it can generate any desired fragmentation pattern through General Feature Format (GFF) information. In an example of tomato (Solanum lycopersicum) accessions we visualize SNP patterns and elucidate both position and boundaries of the introgressions. We also show that our tool is capable of identifying alien DNA in a panel of the closely related S. pimpinellifolium by examining phylogenetic relationships of the introgressed segments in tomato. In a third example, we demonstrate the power of the iBrowser in a panel of 597 Arabidopsis accessions, detecting the boundaries of a SNP‐free region around a polymorphic 1.17 Mbp inverted segment on the short arm of chromosome 4. The architecture and functionality of iBrowser makes the software appropriate for a broad set of analyses including SNP mining, genome structure analysis, and pedigree analysis. Its functionality, together with the capability to process large data sets and efficient visualization of sequence variation, makes iBrowser a valuable breeding tool. 相似文献
12.
13.
《Biological reviews of the Cambridge Philosophical Society》2018,93(2):1014-1031
Whole‐genome or whole‐exome sequencing (WGS/WES) of the affected proband together with normal parents (trio) is commonly adopted to identify de novo germline mutations (DNMs) underlying sporadic cases of various genetic disorders. However, our current knowledge of the occurrence and functional effects of DNMs remains limited and accurately identifying the disease‐causing DNM from a group of irrelevant DNMs is complicated. Herein, we provide a general‐purpose discussion of important issues related to pathogenic gene identification based on trio‐based WGS/WES data. Specifically, the relevance of DNMs to human sporadic diseases, current knowledge of DNM biogenesis mechanisms, and common strategies or software tools used for DNM detection are reviewed, followed by a discussion of pathogenic gene prioritization. In addition, several key factors that may affect DNM identification accuracy and causal gene prioritization are reviewed. Based on recent major advances, this review both sheds light on how trio‐based WGS/WES technologies can play a significant role in the identification of DNMs and causal genes for sporadic diseases, and also discusses existing challenges. 相似文献
14.
《Genomics》2023,115(2):110580
Bloodstream infections are a major cause of morbidity and mortality worldwide. Early administration of appropriate antimicrobial therapy can improve patient survival and prevent antimicrobial resistance (AMR). Whole genome sequencing (WGS) can provide information for pathogen identification, AMR prediction and sequence typing earlier than current phenotypic diagnostic methods.WGS was performed on 97 clinical blood specimens and matched culture isolate pairs. Specimen/isolate pairs were MLST sequence-typed and further characterization was performed on Streptococcus species.WGS correctly identified 91.7% of clinical specimens and 93.2% of matched isolates representing 35 different microbial species. MLST types were assigned for 89.9% of matched cultures and 21.7% of blood specimens, with higher success for blood culture specimens extracted within 3 days (52% characterized) than 7 days (9.3%).This study demonstrates the potential use of WGS for identification and characterization of pathogens directly from blood culture specimens to facilitate timely initiation of appropriate antimicrobial therapies. 相似文献
15.
Wenhao Xu Yu Lin Keliang Zhao Haimeng Li Yinping Tian Jacob Njaramba Ngatia Yue Ma Sunil Kumar Sahu Huabing Guo Xiaosen Guo Yan Chun Xu Huan Liu Karsten Kristiansen Tianming Lan Xinying Zhou 《Ecology and evolution》2021,11(1):390-401
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next‐generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole‐genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA. 相似文献
16.
17.
Microbial minimalism: genome reduction in bacterial pathogens 总被引:37,自引:0,他引:37
When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts. 相似文献
18.
Mustafa Özmen Hui Wang Jian Wang Vesselin N. Paunov Guanghe Li Wei E. Huang 《Microbial biotechnology》2011,4(1):89-97
We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment. 相似文献
19.
The extent of whole‐genome copy number alterations predicts aggressive features in primary melanomas 下载免费PDF全文
Greta Gandolfi Caterina Longo Elvira Moscarella Iris Zalaudek Valentina Sancisi Margherita Raucci Gloria Manzotti Mila Gugnoni Simonetta Piana Giuseppe Argenziano Alessia Ciarrocchi 《Pigment cell & melanoma research》2016,29(2):163-175
Recent evidence indicates that melanoma comprises distinct types of tumors and suggests that specific morphological features may help predict its clinical behavior. Using a SNP‐array approach, we quantified chromosomal copy number alterations (CNA) across the whole genome in 41 primary melanomas and found a high degree of heterogeneity in their genomic asset. Association analysis correlating the number and relative length of CNA with clinical, morphological, and dermoscopic attributes of melanoma revealed that features of aggressiveness were strongly linked to the overall amount of genomic damage. Furthermore, we observed that melanoma progression and survival were mainly affected by a low number of large chromosome losses and a high number of small gains. We identified the alterations most frequently associated with aggressive melanoma, and by integrating our data with publicly available gene expression profiles, we identified five genes which expression was found to be necessary for melanoma cells proliferation. In conclusion, this work provides new evidence that the phenotypic heterogeneity of melanoma reflects a parallel genetic diversity and lays the basis to define novel strategies for a more precise prognostic stratification of patients. 相似文献
20.
Liliana C. M. Salvador Daniel J. O'Brien Melinda K. Cosgrove Tod P. Stuber Angie M. Schooley Joseph Crispell Steven V. Church Yrj T. Grhn Suelee Robbe‐Austerman Rowland R. Kao 《Molecular ecology》2019,28(9):2192-2205
The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify and control. These difficulties are exacerbated when several wildlife species are potentially involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an ecological shift in Michigan, with spillover from cattle leading to an endemically infected white‐tailed deer (deer) population. It has potentially substantial implications for the health and well‐being of both wildlife and livestock and incurs a significant economic cost to industry and government. Deer are known to act as a reservoir of infection, with evidence of M. bovis transmission to sympatric elk and cattle populations. However, the role of elk in the circulation of M. bovis is uncertain; they are few in number, but range further than deer, so may enable long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from exceptionally well‐observed populations of elk, deer and cattle with spatiotemporal locations, we use spatial and Bayesian phylogenetic analyses to show strong spatiotemporal admixture of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission within the two populations, or exposure to a common source. However, there is no support for significant pathogen transfer amongst elk and cattle, and our data are in accordance with existing evidence that interspecies transmission in Michigan is likely only maintained by deer. This study demonstrates the value of whole genome population studies of M. bovis transmission at the wildlife‐livestock interface, providing insights into bTB management in an endemic system. 相似文献