共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent development in DNA microarray technologies has made the reconstruction of gene regulatory networks (GRNs) feasible. To infer the overall structure of a GRN, there is a need to find out how the expression of each gene can be affected by the others. Many existing approaches to reconstructing GRNs are developed to generate hypotheses about the presence or absence of interactions between genes so that laboratory experiments can be performed afterwards for verification. Since, they are not intended to be used to predict if a gene in an unseen sample has any interactions with other genes, statistical verification of the reliability of the discovered interactions can be difficult. Furthermore, since the temporal ordering of the data is not taken into consideration, the directionality of regulation cannot be established using these existing techniques. To tackle these problems, we propose a data mining technique here. This technique makes use of a probabilistic inference approach to uncover interesting dependency relationships in noisy, high-dimensional time series expression data. It is not only able to determine if a gene is dependent on another but also whether or not it is activated or inhibited. In addition, it can predict how a gene would be affected by other genes even in unseen samples. For performance evaluation, the proposed technique has been tested with real expression data. Experimental results show that it can be very effective. The discovered dependency relationships can reveal gene regulatory relationships that could be used to infer the structures of GRNs. 相似文献
3.
Background
Inference of gene networks from expression data is an important problem in computational biology. Many algorithms have been proposed for solving the problem efficiently. However, many of the available implementations are programming libraries that require users to write code, which limits their accessibility.Results
We have developed a tool called CyNetworkBMA for inferring gene networks from expression data that integrates with Cytoscape. Our application offers a graphical user interface for networkBMA, an efficient implementation of Bayesian Model Averaging methods for network construction. The client-server architecture of CyNetworkBMA makes it possible to distribute or centralize computation depending on user needs.Conclusions
CyNetworkBMA is an easy-to-use tool that makes network inference accessible to non-programmers through seamless integration with Cytoscape. CyNetworkBMA is available on the Cytoscape App Store at http://apps.cytoscape.org/apps/cynetworkbma.4.
Background
Boolean network (BN) modeling is a commonly used method for constructing gene regulatory networks from time series microarray data. However, its major drawback is that its computation time is very high or often impractical to construct large-scale gene networks. We propose a variable selection method that are not only reduces BN computation times significantly but also obtains optimal network constructions by using chi-square statistics for testing the independence in contingency tables. 相似文献5.
Recently a state-space model with time delays for inferring gene regulatory networks was proposed. It was assumed that each regulation between two internal state variables had multiple time delays. This assumption caused underestimation of the model with many current gene expression datasets. In biological reality, one regulatory relationship may have just a single time delay, and not multiple time delays. This study employs Boolean variables to capture the existence of the time-delayed regulatory relationships in gene regulatory networks in terms of the state-space model. As the solution space of time delayed relationships is too large for an exhaustive search, a genetic algorithm (GA) is proposed to determine the optimal Boolean variables (the optimal time-delayed regulatory relationships). Coupled with the proposed GA, Bayesian information criterion (BIC) and probabilistic principle component analysis (PPCA) are employed to infer gene regulatory networks with time delays. Computational experiments are performed on two real gene expression datasets. The results show that the GA is effective at finding time-delayed regulatory relationships. Moreover, the inferred gene regulatory networks with time delays from the datasets improve the prediction accuracy and possess more of the expected properties of a real network, compared to a gene regulatory network without time delays. 相似文献
6.
7.
Inferring gene networks from time series microarray data using dynamic Bayesian networks 总被引:11,自引:0,他引:11
Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria for learning network structures are introduced from a Bayesian statistical viewpoint. This paper reviews the applications of DBNs over the past years. Real data applications for Saccharomyces cerevisiae time series gene expression data are also shown. 相似文献
8.
9.
10.
Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data 总被引:2,自引:0,他引:2
MOTIVATION: High-throughput technologies have facilitated the acquisition of large genomics and proteomics datasets. However, these data provide snapshots of cellular behavior, rather than help us reveal causal relations. Here, we propose how these technologies can be utilized to infer the topology and strengths of connections among genes, proteins and metabolites by monitoring time-dependent responses of cellular networks to experimental interventions. RESULTS: We demonstrate that all connections leading to a given network node, e.g. to a particular gene, can be deduced from responses to perturbations none of which directly influences that node, e.g. using strains with knock-outs to other genes. To infer all interactions from stationary data, each node should be perturbed separately or in combination with other nodes. Monitoring time series provides richer information and does not require perturbations to all nodes. Overall, the methods we propose are capable of deducing and quantifying functional interactions within and across cellular gene, signaling and metabolic networks. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.dbi.tju.edu/bioinformatics2004.pdf 相似文献
11.
12.
Teppei Shimamura Seiya Imoto Rui Yamaguchi André Fujita Masao Nagasaki Satoru Miyano 《BMC systems biology》2009,3(1):41-13
Background
Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. 相似文献13.
Background
Time series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data. 相似文献14.
15.
Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data 总被引:8,自引:0,他引:8
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous data and can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into complicated biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We conduct Monte Carlo experiments to examine the effectiveness of the proposed method. We also demonstrate the proposed method through the analysis of the Saccharomyces cerevisiae gene expression data. 相似文献
16.
17.
Boolean dynamics of genetic regulatory networks inferred from microarray time series data 总被引:1,自引:0,他引:1
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
18.
Background
The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. 相似文献19.
Background
Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of the discretization method is often arbitrary and no systematic comparison of different discretization has been conducted, in the context of gene regulatory network inference from time series gene expression data. 相似文献20.
Modern microarray technology is capable of providing data about the expression of thousands of genes, and even of whole genomes. An important question is how this technology can be used most effectively to unravel the workings of cellular machinery. Here, we propose a method to infer genetic networks on the basis of data from appropriately designed microarray experiments. In addition to identifying the genes that affect a specific other gene directly, this method also estimates the strength of such effects. We will discuss both the experimental setup and the theoretical background. 相似文献