首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Patterns with wildcards in specified positions, namely spaced seeds, are increasingly used instead of k-mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k-mers can be rapidly computed by exploiting the large overlap between consecutive k-mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing.

Results

The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6\(\times\) to 5.3\(\times\), depending on the structure of the spaced seed.

Conclusions

Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient.

Availability

The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.
  相似文献   

2.
Girotto  Samuele  Comin  Matteo  Pizzi  Cinzia 《BMC bioinformatics》2018,19(15):441-38

Background

Spaced-seeds, i.e. patterns in which some fixed positions are allowed to be wild-cards, play a crucial role in several bioinformatics applications involving substrings counting and indexing, by often providing better sensitivity with respect to k-mers based approaches. K-mers based approaches are usually fast, being based on efficient hashing and indexing that exploits the large overlap between consecutive k-mers. Spaced-seeds hashing is not as straightforward, and it is usually computed from scratch for each position in the input sequence. Recently, the FSH (Fast Spaced seed Hashing) approach was proposed to improve the time required for computation of the spaced seed hashing of DNA sequences with a speed-up of about 1.5 with respect to standard hashing computation.

Results

In this work we propose a novel algorithm, Fast Indexing for Spaced seed Hashing (FISH), based on the indexing of small blocks that can be combined to obtain the hashing of spaced-seeds of any length. The method exploits the fast computation of the hashing of runs of consecutive 1 in the spaced seeds, that basically correspond to k-mer of the length of the run.

Conclusions

We run several experiments, on NGS data from simulated and synthetic metagenomic experiments, to assess the time required for the computation of the hashing for each position in each read with respect to several spaced seeds. In our experiments, FISH can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.9x to 6.03x, depending on the structure of the spaced seeds.
  相似文献   

3.

Background

The fluctuation of atoms around their average positions in protein structures provides important information regarding protein dynamics. This flexibility of protein structures is associated with various biological processes. Predicting flexibility of residues from protein sequences is significant for analyzing the dynamic properties of proteins which will be helpful in predicting their functions.

Results

In this paper, an approach of improving the accuracy of protein flexibility prediction is introduced. A neural network method for predicting flexibility in 3 states is implemented. The method incorporates sequence and evolutionary information, context-based scores, predicted secondary structures and solvent accessibility, and amino acid properties. Context-based statistical scores are derived, using the mean-field potentials approach, for describing the different preferences of protein residues in flexibility states taking into consideration their amino acid context.The 7-fold cross validated accuracy reached 61 % when context-based scores and predicted structural states are incorporated in the training process of the flexibility predictor.

Conclusions

Incorporating context-based statistical scores with predicted structural states are important features to improve the performance of predicting protein flexibility, as shown by our computational results. Our prediction method is implemented as web service called “FLEXc” and available online at: http://hpcr.cs.odu.edu/flexc.
  相似文献   

4.

Background

The continuous flow of EST data remains one of the richest sources for discoveries in modern biology. The first step in EST data mining is usually associated with EST clustering, the process of grouping of original fragments according to their annotation, similarity to known genomic DNA or each other. Clustered EST data, accumulated in databases such as UniGene, STACK and TIGR Gene Indices have proven to be crucial in research areas from gene discovery to regulation of gene expression.

Results

We have developed a new nucleotide sequence matching algorithm and its implementation for clustering EST sequences. The program is based on the original CLU match detection algorithm, which has improved performance over the widely used d2_cluster. The CLU algorithm automatically ignores low-complexity regions like poly-tracts and short tandem repeats.

Conclusion

CLU represents a new generation of EST clustering algorithm with improved performance over current approaches. An early implementation can be applied in small and medium-size projects. The CLU program is available on an open source basis free of charge. It can be downloaded from http://compbio.pbrc.edu/pti
  相似文献   

5.

Background

With the advances in the next-generation sequencing technologies, researchers can now rapidly examine the composition of samples from humans and their surroundings. To enhance the accuracy of taxonomy assignments in metagenomic samples, we developed a method that allows multiple mismatch probabilities from different genomes.

Results

We extended the algorithm of taxonomic assignment of metagenomic sequence reads (TAMER) by developing an improved method that can set a different mismatch probability for each genome rather than imposing a single parameter for all genomes, thereby obtaining a greater degree of accuracy. This method, which we call TADIP (Taxonomic Assignment of metagenomics based on DIfferent Probabilities), was comprehensively tested in simulated and real datasets. The results support that TADIP improved the performance of TAMER especially in large sample size datasets with high complexity.

Conclusions

TADIP was developed as a statistical model to improve the estimate accuracy of taxonomy assignments. Based on its varying mismatch probability setting and correlated variance matrix setting, its performance was enhanced for high complexity samples when compared with TAMER.
  相似文献   

6.

Background

Function prediction by transfer of annotation from the top database hit in a homology search has been shown to be prone to systematic error. Phylogenomic analysis reduces these errors by inferring protein function within the evolutionary context of the entire family. However, accuracy of function prediction for multi-domain proteins depends on all members having the same overall domain structure. By contrast, most common homolog detection methods are optimized for retrieving local homologs, and do not address this requirement.

Results

We present FlowerPower, a novel clustering algorithm designed for the identification of global homologs as a precursor to structural phylogenomic analysis. Similar to methods such as PSIBLAST, FlowerPower employs an iterative approach to clustering sequences. However, rather than using a single HMM or profile to expand the cluster, FlowerPower identifies subfamilies using the SCI-PHY algorithm and then selects and aligns new homologs using subfamily hidden Markov models. FlowerPower is shown to outperform BLAST, PSI-BLAST and the UCSC SAM-Target 2K methods at discrimination between proteins in the same domain architecture class and those having different overall domain structures.

Conclusion

Structural phylogenomic analysis enables biologists to avoid the systematic errors associated with annotation transfer; clustering sequences based on sharing the same domain architecture is a critical first step in this process. FlowerPower is shown to consistently identify homologous sequences having the same domain architecture as the query.

Availability

FlowerPower is available as a webserver at http://phylogenomics.berkeley.edu/flowerpower/.
  相似文献   

7.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

8.

Background

Mixtures of beta distributions are a flexible tool for modeling data with values on the unit interval, such as methylation levels. However, maximum likelihood parameter estimation with beta distributions suffers from problems because of singularities in the log-likelihood function if some observations take the values 0 or 1.

Methods

While ad-hoc corrections have been proposed to mitigate this problem, we propose a different approach to parameter estimation for beta mixtures where such problems do not arise in the first place. Our algorithm combines latent variables with the method of moments instead of maximum likelihood, which has computational advantages over the popular EM algorithm.

Results

As an application, we demonstrate that methylation state classification is more accurate when using adaptive thresholds from beta mixtures than non-adaptive thresholds on observed methylation levels. We also demonstrate that we can accurately infer the number of mixture components.

Conclusions

The hybrid algorithm between likelihood-based component un-mixing and moment-based parameter estimation is a robust and efficient method for beta mixture estimation. We provide an implementation of the method (“betamix”) as open source software under the MIT license.
  相似文献   

9.

Background

Finding potential drug targets is a crucial step in drug discovery and development. Recently, resources such as the Library of Integrated Network-Based Cellular Signatures (LINCS) L1000 database provide gene expression profiles induced by various chemical and genetic perturbations and thereby make it possible to analyze the relationship between compounds and gene targets at a genome-wide scale. Current approaches for comparing the expression profiles are based on pairwise connectivity mapping analysis. However, this method makes the simple assumption that the effect of a drug treatment is similar to knocking down its single target gene. Since many compounds can bind multiple targets, the pairwise mapping ignores the combined effects of multiple targets, and therefore fails to detect many potential targets of the compounds.

Results

We propose an algorithm to find sets of gene knock-downs that induce gene expression changes similar to a drug treatment. Assuming that the effects of gene knock-downs are additive, we propose a novel bipartite block-wise sparse multi-task learning model with super-graph structure (BBSS-MTL) for multi-target drug repositioning that overcomes the restrictive assumptions of connectivity mapping analysis.

Conclusions

The proposed method BBSS-MTL is more accurate for predicting potential drug targets than the simple pairwise connectivity mapping analysis on five datasets generated from different cancer cell lines.

Availability

The code can be obtained at http://gr.xjtu.edu.cn/web/liminli/codes.
  相似文献   

10.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

11.

Background

Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors.

Methods

In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families.

Results

We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database.

Conclusions

Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement.
  相似文献   

12.

Introduction

A common problem in metabolomics data analysis is the existence of a substantial number of missing values, which can complicate, bias, or even prevent certain downstream analyses. One of the most widely-used solutions to this problem is imputation of missing values using a k-nearest neighbors (kNN) algorithm to estimate missing metabolite abundances. kNN implicitly assumes that missing values are uniformly distributed at random in the dataset, but this is typically not true in metabolomics, where many values are missing because they are below the limit of detection of the analytical instrumentation.

Objectives

Here, we explore the impact of nonuniformly distributed missing values (missing not at random, or MNAR) on imputation performance. We present a new model for generating synthetic missing data and a new algorithm, No-Skip kNN (NS-kNN), that accounts for MNAR values to provide more accurate imputations.

Methods

We compare the imputation errors of the original kNN algorithm using two distance metrics, NS-kNN, and a recently developed algorithm KNN-TN, when applied to multiple experimental datasets with different types and levels of missing data.

Results

Our results show that NS-kNN typically outperforms kNN when at least 20–30% of missing values in a dataset are MNAR. NS-kNN also has lower imputation errors than KNN-TN on realistic datasets when at least 50% of missing values are MNAR.

Conclusion

Accounting for the nonuniform distribution of missing values in metabolomics data can significantly improve the results of imputation algorithms. The NS-kNN method imputes missing metabolomics data more accurately than existing kNN-based approaches when used on realistic datasets.
  相似文献   

13.

Background

Hot spot residues are functional sites in protein interaction interfaces. The identification of hot spot residues is time-consuming and laborious using experimental methods. In order to address the issue, many computational methods have been developed to predict hot spot residues. Moreover, most prediction methods are based on structural features, sequence characteristics, and/or other protein features.

Results

This paper proposed an ensemble learning method to predict hot spot residues that only uses sequence features and the relative accessible surface area of amino acid sequences. In this work, a novel feature selection technique was developed, an auto-correlation function combined with a sliding window technique was applied to obtain the characteristics of amino acid residues in protein sequence, and an ensemble classifier with SVM and KNN base classifiers was built to achieve the best classification performance.

Conclusion

The experimental results showed that our model yields the highest F1 score of 0.92 and an MCC value of 0.87 on ASEdb dataset. Compared with other machine learning methods, our model achieves a big improvement in hot spot prediction.
  相似文献   

14.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

15.

Introduction

Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnosing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available for routine use.

Objectives

We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection.

Methods

NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection.

Results

We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft rejection in the cohorts used (AUC of 0.72 and 0.74, respectively).

Conclusion

A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test that can support physicians in their clinical assessment of a kidney transplant patient.
  相似文献   

16.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

17.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

18.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

19.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

20.

Background and aims

Biocrust morphology is often used to infer ecological function, but morphologies vary widely in pigmentation and thickness. Little is known about the links between biocrust morphology and the composition of constituent microbial community. This study aimed to examine these links using dryland crusts varying in stage and morphology.

Methods

We compared the microbial composition of three biocrust developmental stages (Early, Mid, Late) with bare soil (Bare) using high Miseq Illumina sequencing. We used standard diversity measures and network analysis to explore how microbe-microbe associations changed with biocrust stage.

Results

Biocrust richness and diversity increased with increasing stage, and there were marked differences in the microbial signatures among stages. Bare and Late stages were dominated by Alphaproteobacteria, but Cyanobacteria was the dominant phylum in Early and Mid stages. The greatest differences in microbial taxa were between Bare and Late stages. Network analysis indicated highly-connected hubs indicative of small networks.

Conclusions

Our results indicate that readily discernible biocrust features may be good indicators of microbial composition and structure. These findings are important for land managers seeking to use biocrusts as indicators of ecosystem health and function. Treating biocrusts as a single unit without considering crust stage is likely to provide misleading information on their functional roles.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号