首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Objectives

To study the roles and mechanisms of HuR in cancer stem cell maintenance of lung cancer.

Results

HuR expression was increased in tumor spheres of lung cancer cells. Knockdown of HuR suppressed spheroid formation and size, inhibited the expression of stemness-related marker, Oct4, Nanog and ALDH in lung cancer cells. Importantly, HuR and CDK3 expressions were increased in lung cancer tissues compared with normal adjacent tissues, and positively correlated. Mechanistically, HuR directly bound to CDK3, and increased CDK3 mRNA stability and expression. Additionally, miR-873 or miR-125a-3p attenuated the promotion of HuR on CDK3 expression and lung cancer stemness. Furthermore, HuR facilitated lung cancer stemness dependent on CDK3 expression. miR-873 or miR-125a-3p level was negatively correlated with HuR and CDK3 expression levels in lung cancer tissues.

Conclusions

HuR facilitates lung cancer stemness via regulating miR-873/CDK3 and miR-125a-3p/CDK3 axis.
  相似文献   

3.

Background

Epstein-Barr virus (EBV) was the first virus identified to encode microRNAs (miRNAs). Both of viral and human cellular miRNAs are important in EBV infection. However, the dynamic expression profile of miRNAs during primary EBV infection was unknown. This study aimed to investigate the dynamic expression profile of viral and cellular miRNAs in infectious mononucleosis (IM) caused by primary EBV infection.

Methods

The levels of viral and cellular miRNAs were measured in fifteen pediatric IM patients at three different time-points. Fifteen healthy children who were seropositive for EBV were enrolled in the control group. Relative expression levels of miRNAs were detected by quantitative real-time PCR (qPCR) assay.

Results

EBV-miR-BHRF1-1, 1-2-3P, miR-BART13-1, 19-3p, 11-3P, 12–1, and 16–1 in IM patients of early phase were significantly higher than in healthy children. Most cellular miRNAs of B cells, such as hsa-miR-155-5p, ?34a-5p, ?18b-5p, ?181a-5p, and ?142-5p were up-regulated; while most of cellular miRNAs of CD8?+?T cells, such as hsa-miR-223, ?29c-3p, ?181a, ?200a-3p, miR-155-5p, ?146a, and ?142-5p were down-regulated in IM patients. With disease progression, nearly all of EBV-miRNAs decreased, especially miR-BHRF1, but at a slower rate than EBV DNA loads. Most of the cellular miRNAs of B cells, including hsa-miR-134-5p, ?18b-5p, ?34a-5p, and -196a-5p increased with time. However, most of the cellular miRNAs of CD8?+?T cells, including hsa-let-7a-5p, ?142-3p, ?142-5p, and ?155-5p decreased with time. Additionally, hsa-miR-155-5p of B cells and hsa-miR-18b-5p of CD8+ T cells exhibited a positive correlation with miR-BHRF1-2-5P and miR-BART2-5P (0.96?≤?r?≤?0.99, P?<?0.05). Finally, hsa-miR-181a-5p of B cells had positive correlation with miR-BART4-3p, 4-5P, 16–1, and 22 (0.97?≤?r?≤?0.99, P?<?0.05).

Conclusions

Our study is the first to describe the expression profile of viral and cellular miRNAs in IM caused by primary EBV infection. These results might be the basis of investigating the pathogenic mechanism of EBV-related diseases and bring new insights into their diagnosis and treatment.
  相似文献   

4.
5.

Background

Numerous recent studies indicate that the long non-coding RNAs (lncRNAs) are frequently abnormal expressed and take critical roles in many cancers. Renal cell carcinoma is the secondary malignant tumors in the urinary system and has high mortality and morbidity. Around 80% of RCCs is clear cell renal cell carcinoma (ccRCC) and is characterized by high metastasis and relapse rate. However, the clinical significances of lncRNAs in ccRCC are still unknown.

Methods

The human cancer lncRNA PCR array (Yingbio) was performed to detect the differentially expressed lncRNAs in human ccRCC samples. Real-time PCR (RT-PCR), dual-luciferase assay, RNA binding protein immunoprecipitation (RIP) assay, transwell assay, CCK-8 assay, and western blot were performed to explore the molecular mechanism of lncRNAs in ccRCC cell migration and invasion.

Results

In this study, lncRNA-H19 was high expressed and negatively correlated with miR-29a-3p in ccRCC. By bioinformatics software, dual-luciferase reporter and RIP assays, we verified that miR-29a-3p was identified as a direct target of lncRNA-H19. RT-PCR and western blot demonstrated that down-regulated lncRNA-H19 could affect the expression of miR-29a-3p targeting E2F1 with competitively binding miR-29a-3p. Furthermore, transwell assays indicated that lncRNA-H19 knockdown inhibited cells migration and invasion, but this effect was attenuated by co-transfection of lncRNA-H19 siRNA and miR-29a-3p inhibitor. Over expression of E2F1 could rescue lncRNA-H19 siRNA induced suppression on cell migration and invasion in ccRCC cells.

Conclusions

These results show a possible competing endogenous RNAs regulatory network involving lncRNA-H19 regulates E2F1 expression by competitively sponging endogenous miR-29a-3p in ccRCC. This mechanism may contribute to a better understanding of ccRCC pathogenesis, and lncRNA-H19 may be further considered as a potential therapeutic target for ccRCC intervention.
  相似文献   

6.

Background

Accumulation of amyloid β-peptide (Aβ) is implicated in the pathogenesis and development of Alzheimer’s disease (AD). Neuron-enriched miRNA was aberrantly regulated and may be associated with the pathogenesis of AD. However, regarding whether miRNA is involved in the accumulation of Aβ in AD, the underlying molecule mechanism remains unclear. Therefore, we conduct a systematic identification of the promising role of miRNAs in Aβ deposition, and shed light on the molecular mechanism of target miRNAs underlying SH-SY5Y cells treated with Aβ-induced cytotoxicity.

Results

Statistical analyses of microarray data revealed that 155 significantly upregulated and 50 significantly downregulated miRNAs were found on the basis of log2 | Fold Change |?≥?0.585 and P?< 0.05 filter condition through 2588 kinds of mature miRNA probe examined. PCR results show that the expression change trend of the selected six miRNAs (miR-6845-3p, miR-4487, miR-4534, miR-3622-3p, miR-1233-3p, miR-6760-5p) was consistent with the results of the gene chip. Notably, Aβ25–35 downregulated hsa-miR-4487 and upregulated hsa-miR-6845-3p in SH-SY5Y cell lines associated with Aβ-mediated pathophysiology. Increase of hsa-miR-4487 could inhibit cells apoptosis, and diminution of hsa-miR-6845-3p could attenuate axon damage mediated by Aβ25–35 in SH-SY5Y.

Conclusions

Together, these findings suggest that dysregulation of hsa-miR-4487 and hsa-miR-6845-3p contributed to the pathogenesis of AD associated with Aβ25–35 mediated by triggering cell apoptosis and synaptic dysfunction. It might be beneficial to understand the pathogenesis and development of clinical diagnosis and treatment of AD. Further, our well-designed validation studies will test the miRNAs signature as a prognostication tool associated with clinical outcomes in AD.
  相似文献   

7.

Objectives

To investigate the roles of miR-149 in the progression of human osteosarcoma (OS).

Results

miR-149 level was upregulated in tissues from OS patients more than in normal subjects. Cell proliferation and apoptosis assays revealed that miR-149 increased cell proliferation and inhibited cell apoptosis in OS cell line (MG63). An increase of Bcl-2 gene expression and a decrease of cleaved-caspase-3, and cleaved-PARP expression were observed in MG63 cells with transfection of miR-149. Additionally, bone morphogenetic protein 9 (BMP9) was identified as a target of miR-149 in MG63 cells, and BMP9 expression was negatively correlated with miR149 level in OS clinical samples. Co-overexpression of BMP9 with miR-149 in MG63 cells prohibited miR-149-mediated promotive effects on OS progression. Importantly, overexpression of miR-149 conferred chemoresistance in MG63 cells.

Conclusions

miR-149 promotes OS progression via targeting BMP9.
  相似文献   

8.

Objectives

To explore the functional effects of miR-1284 on gastric cancer cells.

Results

Overexpression of miR-1284 significantly reduced SGC-7901 cell proliferation, but improved apoptosis. However, miR-1284 suppression displayed the inversed impacts. Furthermore, the protein levels of p27, Bax, procaspase-3 and active caspase-3 were up-regulated by miR-1284 overexpression, but were down-regulated by miR-1284 suppression. The level of Bcl-2 was down-regulated by miR-1284 overexpression, while it was up-regulated by miR-1284 suppression. The level of p21 was unaffected.

Conclusion

These results suggest that miR-1284 overexpression might be a suppressor for gastric cancer via controlling of cell proliferation and apoptosis.
  相似文献   

9.

Objectives

To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC).

Results

In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2.

Conclusion

miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.
  相似文献   

10.

Background

Despite diverging levels of amyloid-β (Aβ) and TAU pathology, different mouse models, as well as sporadic AD patients show predictable patterns of episodic memory loss. MicroRNA (miRNA) deregulation is well established in AD brain but it is unclear whether Aβ or TAU pathology drives those alterations and whether miRNA changes contribute to cognitive decline.

Methods

miRNAseq was performed on cognitively intact (4 months) and impaired (10 months) male APPtg (APPswe/PS1L166P) and TAUtg (THY-Tau22) mice and their wild-type littermates (APPwt and TAUwt). We analyzed the hippocampi of 12 mice per experimental group (n =?96 in total), and employed a 2-way linear model to extract differentially expressed miRNAs. Results were confirmed by qPCR in a separate cohort of 4 M and 10 M APPtg and APPwt mice (n =?7–9 per group) and in human sporadic AD and non-demented control brain. Fluorescent in situ hybridization identified their cellular expression. Functional annotation of predicted targets was performed using GO enrichment. Behavior of wild-type mice was assessed after intracerebroventricular infusion of miRNA mimics.

Results

Six miRNAs (miR-10a-5p, miR-142a-5p, miR-146a-5p, miR-155-5p, miR-211-5p, miR-455-5p) are commonly upregulated between APPtg and TAUtg mice, and four of these (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) are altered in AD patients. All 6 miRNAs are strongly enriched in neurons. Upregulating these miRNAs in wild-type mice is however not causing AD-related cognitive disturbances.

Conclusion

Diverging AD-related neuropathologies induce common disturbances in the expression of neuronal miRNAs. 4 of these miRNAs are also upregulated in AD patients. Therefore these 4 miRNAs (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) appear part of a core pathological process in AD patients and APPtg and TAUtg mice. They are however not causing cognitive disturbances in wild-type mice. As some of these miRNA target AD relevant proteins, they may be, in contrast, part of a protective response in AD.
  相似文献   

11.

Objectives

To investigate whether miR-1260b can regulate migration and invasion of hepatocellular carcinoma (HCC) by targeting RGS22.

Results

miR-1260b was up-regulated in HCC tissues compared with their corresponding non-cancerous tissues. Over-expression of miR-1260b increased migration and invasion of HepG2 and SMMC-7721 cells associated with HCC. Regulator of G-protein signaling 22 (RGS22) was identified as a directly target of miR-1260b and was inhibited by miR-1260b. Knockdown of RGS22 increased proliferation of HCC cells.

Conclusions

The new identified miR-1260b/RGS22 axis provides useful therapeutic methods for treatment of HCC deepening on our understanding of underlying mechanisms of HCC tumorigenesis.
  相似文献   

12.
13.

Objectives

To explore the roles of miR-130b-3p and miR-301b-3p which may regulate Rb1-inducible coiled-coil 1 (Rb1cc1) expression during myogenic differentiation of chicken primary myoblasts.

Results

After 4 days of myogenic differentiation, myotubes appeared and after 6 days the cells fused to each other and expression of MyHC could be detected by immunofluorescence staining. TargetScan and RNAhybrid 2.2 showed miR-130b-3p and miR-301b-3p were well complementary with the target site of Rb1cc1 3′-untranslated region (3′-UTR). Using the dual-luciferase assay, we found miR-130b-3p and miR-301b-3p could inhibit Rb1cc1 expression by binding to its 3′-UTR. Real-time PCR showed Rb1cc1 mRNA expression level was almost reciprocal to that of miR-130b-3p or miR-301b-3p during myogenic differentiation. Furthermore, over-expression of miR-130b-3p or miR-301b-3p down-regulated the expression levels of Rb1cc1, myoblast determination protein, myogenin and myosin heavy chain.

Conclusions

miR-130b-3p or miR-301b-3p negatively regulate Rb1cc1 expression to affect myogenic differentiation.
  相似文献   

14.

Background

Osteosarcoma (OS) is the most common bone malignancy prevalent in children and young adults. MicroRNA-133b (miR-133b), through directly targeting the fibroblast growth factor receptor 1 (FGFR1), is increasingly recognized as a tumor suppressor in different types of cancers. However, little is known on the biological and functional significance of miR-133b/FGFR1 regulation in osteosarcoma.

Methods

The expressions of miR-133b and FGFR1 were examined by RT-qPCR and compared between 30 paired normal bone tissues and OS tissues, and also between normal osteoblasts and three OS cells lines, MG-63, U2OS, and SAOS-2. Using U2OS and MG-63 as the model system, the functional significance of miR-133b and FGFR1 was assessed on cell viability, proliferation, apoptosis, migration/invasion, and epithelial–mesenchymal transition (EMT) by overexpressing miR-133b and down-regulating FGFR1 expression, respectively. Furthermore, the signaling cascades controlled by miR-133b/FGFR1 were examined.

Results

miR-133b was significantly down-regulated while FGFR1 robustly up-regulated in OS tissues and OS cell lines, when compared to normal bone tissues and normal osteoblasts, respectively. Low miR-133b expression and high FGFR1 expression were associated with location of the malignant lesion, advanced clinical stage, and distant metastasis. FGFR1 was a direct target of miR-133b. Overexpressing miRNA-133b or knocking down FGFR1 significantly reduced the viability, proliferation, migration/invasion, and EMT, but promoted apoptosis of both MG-63 and U2OS cells. Both the Ras/MAPK and PI3K/Akt intracellular signaling cascades were inhibited in response to overexpressing miRNA-133b or knocking down FGFR1 in OS cells.

Conclusion

miR-133b, by targeting FGFR1, presents a plethora of tumor suppressor activities in OS cells. Boosting miR-133b expression or reducing FGFR1 expression may benefit OS therapy.
  相似文献   

15.

Background

PTEN is well known to function as a tumor suppressor that antagonizes oncogenic signaling and maintains genomic stability. The PTEN gene is frequently deleted or mutated in human cancers and the wide cancer spectrum associated with PTEN deficiency has been recapitulated in a variety of mouse models of Pten deletion or mutation. Pten mutations are highly penetrant in causing various types of spontaneous tumors that often exhibit resistance to anticancer therapies including immunotherapy. Recent studies demonstrate that PTEN also regulates immune functionality.

Objective

To understand the multifaceted functions of PTEN as both a tumor suppressor and an immune regulator.

Methods

This review will summarize the emerging knowledge of PTEN function in cancer immunoediting. In addition, the mechanisms underlying functional integration of various PTEN pathways in regulating cancer evolution and tumor immunity will be highlighted.

Results

Recent preclinical and clinical studies revealed the essential role of PTEN in maintaining immune homeostasis, which significantly expands the repertoire of PTEN functions. Mechanistically, aberrant PTEN signaling alters the interplay between the immune system and tumors, leading to immunosuppression and tumor escape.

Conclusion

Rational design of personalized anti-cancer treatment requires mechanistic understanding of diverse PTEN signaling pathways in modulation of the crosstalk between tumor and immune cells.
  相似文献   

16.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

17.

Objectives

To investigate the role of microRNA-126-5p (miR-126-5p) in acute lung injury induced by bronchial instillation of lipopolysaccharide (LPS), and to explore the potential target(s) of miR-126-5p in acute lung injury.

Results

In the mice with LPS-induced acute lung injury, the level of miR-126-5p in the pulmonary tissues was decreased by 41 % whilst pulmonary vascular endothelial growth factor-A (VEGFA) doubled in its mRNA content and increased threefold in its protein level. Similar results were observed in the alveolar type II (ATII) cells treated with LPS. By using luciferase reporter assay, we found that miR-126-5p inhibited VEGFA expression by targeting its 3′-untranslated region. In addition, overexpression of miR-126-5p attenuated LPS-induced reduction of epithelial sodium channel and aquaporin 1 in ATII cells

Conclusions

MiR-126-5p was down-regulated in LPS-induced acute lung injury in mice. Thus overexpression of miR-126-5p may alleviate acute lung injury by down-regulating VEGFA.
  相似文献   

18.

Objective

To evaluate the role and the molecular mechanism of miR-30d in non-small cell lung cancer (NSCLC).

Results

qRT-PCR was used to detect miR-30d expression in NSCLC tissues and cell lines. miR-30d was frequently down-regulated in NSCLC and its expression was associated with clinicopathological features of NSCLCC patients. Over-expression of miR-30d notably inhibited cell migration and invasion in NSCLC cell lines. miR-30d could negatively regulate Nuclear factor I B (NFIB) by directly targeting its 3′-UTR, which was confirmed by luciferase assay. NFIB also reversed miR-30d-mediated suppression on the migration and invasion in NSCLC cell lines.

Conclusion

miR-30d suppressed cell migration and invasion by directly targeting NFIB in NSCLC, and NFIB could partially abrogated the inhibition of biological functions by miR-30d.
  相似文献   

19.

Background

Schwannoma arising from peripheral nervous sheaths is a benign tumor.

Methods

To evaluate cell cytotoxicity, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction and terminal deoxynucleotidyltransferase UTP nick-end labeling (TUNEL) assays were used. A microRNA (miRNA) array was used to identify the miRNAs involved in curcumin-induced apoptosis. To examine miRNA expression, quantitative RT-PCR was used.

Results

In this study, curcumin exerted cellular cytotoxicity against RT4 schwannoma cells, with an increase in TUNEL-positive cells. Curcumin also activated the expression of apoptotic proteins, such as polyADP ribose polymerase, caspase-3, and caspase-9. The miRNA array revealed that seven miRNAs (miRNA 350, miRNA 17-2-3p, let 7e-3p, miRNA1224, miRNA 466b-1-3p, miRNA 18a-5p, and miRNA 322-5p) were downregulated following treatment with both 10 and 20 μM curcumin in RT4 cells, while four miRNAs (miRNA122-5p, miRNA 3473, miRNA182, and miRNA344a-3p) were upregulated. Interestingly, transfection with a miRNA 344a-3p mimic downregulated the mRNA expression of Bcl2 and upregulated that of Bax, Curcumin treatment in RT 4 cells also reduced the mRNA expression of Bcl2 and enhanced expression of Bax, Overexpression of miRNA344a-3p mimic combined with curcumin treatment activated the expression of apoptotic proteins, including procaspase-9 and cleaved caspase-3 while inhibition of miRNA 344a-3p using miR344a-3p inhibitor repressed cleaved caspase-3 and -9 in curcumin treated RT-4 cells compared to control.

Conclusions

Our findings demonstrate that curcumin induces apoptosis in schwannoma cells via miRNA 344a-3p. Thus, curcumin may serve as a potent therapeutic agent for the treatment of schwannoma.
  相似文献   

20.

Objective

To investigate the roles of miR-34a in progression and chemoresistance of glioma cells.

Results

Quantitative real-time PCR analysis showed that miR-34a level was lower, but PD-L1 expression level was higher in glioma tissue specimens compared with normal brain tissues and their expression levels were negatively correlated. Ectopic expression of miR-34a inhibited glioma cell proliferation, promoted cell cycle arrest in G1/S phase and cell apoptosis. Additionally, miR-34a/PD-L1 axis was again confirmed and co-expression of PD-L1 with miR-34a mimics attenuated the effects of miR-34a on cell proliferation and apoptosis in glioma cells. Importantly, PD-L1 overexpression resulted in chemoresistance in glioma cells, this effect was attenuated by miR-34a overexpression.

Conclusions

miR-34a inhibits glioma cells progression and chemoresistance via targeting PD-L1.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号