首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reasons for the occurrence of microwave noise at the output of a plasma relativistic amplifier have been analyzed. It is found that, in the absence of an input signal, the emission spectrum of the plasma relativistic microwave amplifier is similar to that of an electron beam in vacuum. It is concluded that microwave noise at the output of the amplifier appears as a result of amplification of the intrinsic noise of the electron beam. The emission characteristics of a relativistic electron beam formed in a magnetically insulated diode with an explosive emission cathode in vacuum have been studied experimentally for the first time. An important point is that, in this case, there is no virtual cathode in the drift space.  相似文献   

3.
4.
Interlock is a structural element in DNA G-quadruplexes that can be compared with the commonly used complementary binding of ‘sticky ends’ in DNA duplexes. G-quadruplex interlocking can be a basis for the assembly of higher-order structures. In this study, we formulated a rule to engineer (3 + 1) interlocked dimeric G-quadruplexes and established the folding topology of the designed DNA sequences by nuclear magnetic resonance spectroscopy. These interlocked G-quadruplexes are very stable and can serve as compact robust scaffolds for various applications. Different structural elements can be engineered in these robust scaffolds. We demonstrated the anti-HIV inhibition activity of the newly designed DNA sequences.  相似文献   

5.
A mechanism for generating circadian rhythms has been of major interest in recent years. After the discovery of per and tim, a model with a simple feedback loop involving per and tim has been proposed. However, it is recognized that the simple feedback model cannot account for phenotypes generated by various mutants. A recent report by Glossop, Lyons & Hardin [Science286, 766 (1999)] on Drosophila suggests involvement of another feedback loop by dClk that is interlocked with per-tim feedback loop. In order to examine whether interlocked feedback loops can be a basic mechanism for circadian rhythms, a mathematical model was created and examined. Through extensive simulation and mathematical analysis, it was revealed that the interlocked feedback model accounts for the observations that are not explained by the simple feedback model. Moreover, the interlocked feedback model has robust properties in oscillations.  相似文献   

6.
Kurata H  Tanaka T  Ohnishi F 《PloS one》2007,2(10):e1103
Dynamic simulations are necessary for understanding the mechanism of how biochemical networks generate robust properties to environmental stresses or genetic changes. Sensitivity analysis allows the linking of robustness to network structure. However, it yields only local properties regarding a particular choice of plausible parameter values, because it is hard to know the exact parameter values in vivo. Global and firm results are needed that do not depend on particular parameter values. We propose mathematical analysis for robustness (MAR) that consists of the novel evolutionary search that explores all possible solution vectors of kinetic parameters satisfying the target dynamics and robustness analysis. New criteria, parameter spectrum width and the variability of solution vectors for parameters, are introduced to determine whether the search is exhaustive. In robustness analysis, in addition to single parameter sensitivity analysis, robustness to multiple parameter perturbation is defined. Combining the sensitivity analysis and the robustness analysis to multiple parameter perturbation enables identifying critical reactions. Use of MAR clearly identified the critical reactions responsible for determining the circadian cycle in the Drosophila interlocked circadian clock model. In highly robust models, while the parameter vectors are greatly varied, the critical reactions with a high sensitivity are uniquely determined. Interestingly, not only the per-tim loop but also the dclk-cyc loop strongly affect the period of PER, although the dclk-cyc loop hardly changes its amplitude and it is not potentially influential. In conclusion, MAR is a powerful method to explore wide parameter space without human-biases and to link a robust property to network architectures without knowing the exact parameter values. MAR identifies the reactions critically responsible for determining the period and amplitude in the interlocked feedback model and suggests that the circadian clock intensively evolves or designs the kinetic parameters so that it creates a highly robust cycle.  相似文献   

7.
Atrial natriuretic factor (ANF) receptor guanylate cyclase ANF-RGC is a single transmembrane spanning modular protein. Juxtaposed to each side of the transmembrane module is a Cys423-Cys432 disulfide ANF signaling module motif and the ATP-regulated transduction module (ARM) motif. The signaling module motif is conserved in nearly all membrane guanylate cyclases and is believed to be critical in the signaling activities of all membrane guanylate cyclases. The present study with the model system of the olfactory membrane guanylate cyclase shows that this concept is not valid. Furthermore, the study shows that in ANF-GC the signaling motif works through the ARM domain. A new signaling model is proposed where in its natural state the disulfide structural motif represses the ARM domain activity, which, in turn, represses the catalytic module activity of ANF-RGC. ANF signaling relieves the disulfide structural motif restraint on the ARM inhibition and stimulates the catalytic module of the cyclase.  相似文献   

8.
In this paper, we show how to detect cellular rhythm and its global stability by extending the techniques from the recently developed theory of monotone systems. We establish theoretical results for globally asymptotic stability with consideration of delay by a discrete map. The relationship between positive, negative elements and delay in a general class of interlocked feedback networks can be understood in a system level. Moreover, the correspondence of attractors between a network and its reduced map is obtained and can be used to detect cellular rhythm, and further control the dynamics of the network. We show that global cellular rhythms can always be obtained, thereby enhancing robustness against perturbations of initial conditions and avoiding chaotic oscillations or complete abolishment of oscillations. In this paper, we focus on analyzing the circadian oscillator in Drosophila as an example to detect the occurrence of cellular rhythm and its global stability.  相似文献   

9.
10.
Using living spermatocyte cultures of the grasshopper Melanoplus differentialis three experiments were successfully carried out in which bivalents were interlocked at metaphase I, using a micromanipulator. Two rod-shaped bivalents, with terminal kinetochores, were each made unipolar to opposite poles and placed together in such a way that each put tension upon the other when pulled by its sets of spindle fibers. The experiments unambiguously demonstrated and supported the importance of physical tension in maintaining metaphase I coorientation stability. In two of these experiments the interlocked structures remained stable for 168 and 100 minutes prior to anaphase I separation. In the third experiment, following 25 minutes stability under tension the two bivalents pulled apart. No longer under tension, each bivalent reoriented within 15–30 min, became bipolar, and congressed.  相似文献   

11.
Formyl-CoA transferase catalyses transfer of CoA from formate to oxalate in the first step of oxalate degradation by Oxalobacter formigenes, a bacterium present in the intestinal flora which is implicated in oxalate catabolism in mammals. Formyl-CoA transferase is a member of a family of CoA-transferases for which no structural information is available. We now report the three-dimensional structure of O.formigenes formyl-CoA transferase, which reveals a novel fold and a very striking assembly of the homodimer. The subunit is composed of a large and a small domain where residues from both the N- and C-termini of the subunit are part of the large domain. The linkers between the domains give the subunit a circular shape with a hole in the middle. The enzyme monomers are tightly interacting and are interlocked. This fold requires drastic rearrangement of approximately 75 residues at the C-terminus for formation of the dimer. The structure of a complex of formyl-CoA transferase with CoA is also reported and sets the scene for a mechanistic understanding of enzymes of this family of CoA-transferases.  相似文献   

12.
Noise     
The proliferation of DNA sequence data has generated a concern about the effects of "noise" on phylogeny reconstruction. This concern has led to various recommendations for weighting schemes and for separating data types prior to analysis. A new technique is explored to examine directly how noise influences the stability of parsimony reconstruction. By appending purely random characters onto a matrix of pure signal, or by replacing characters in a matrix of signal by random states, one can measure the degree to which a matrix is robust against noise. Reconstructions were sensitive to tree topology and clade size when noise was added, but were less so when character states were replaced with noise. When a signal matrix is complemented with a noise matrix of equal size, parsimony will trace the original signal about half the time when there is only one synapomorphy per node, and about 90% of the time when there are three synapomorphies per node. Similar results obtain when 20% of a matrix is replaced by noise. Successive weighting does not improve performance. Adding noise to only some taxa is more damaging, but replacing characters in only some taxa is less so. The bootstrap and g1 (tree skewness) statistics are shown to be uninterpretable measures of noise or departures from randomness. Empirical data sets illustrate that commonly recommended schemes of differential weighting (e.g. downweighting third positions) are not well supported from the point of view of reducing the influence of noise nor are more noisy data sets likely to degrade signal found in less noisy data sets.  相似文献   

13.
Noise     
《CMAJ》1928,19(5):583-585
  相似文献   

14.
The termini of linear chromosomes are protected by specialized DNA structures known as telomeres that also facilitate the complete replication of DNA ends. The simplest type of telomere is a covalently closed DNA hairpin structure found in linear chromosomes of prokaryotes and viruses. Bidirectional replication of a chromosome with hairpin telomeres produces a catenated circular dimer that is subsequently resolved into unit-length chromosomes by a dedicated DNA cleavage-rejoining enzyme known as a hairpin telomere resolvase (protelomerase). Here we report a crystal structure of the protelomerase TelK from Klebsiella oxytoca phage varphiKO2, in complex with the palindromic target DNA. The structure shows the TelK dimer destabilizes base pairing interactions to promote the refolding of cleaved DNA ends into two hairpin ends. We propose that the hairpinning reaction is made effectively irreversible by a unique protein-induced distortion of the DNA substrate that prevents religation of the cleaved DNA substrate.  相似文献   

15.
Noise pollution     
《Current biology : CB》2019,29(19):R957-R960
  相似文献   

16.
17.
The quorum‐sensing (QS) response of Vibrio fischeri involves a rapid switch between low and high induction states of the lux operon over a narrow concentration range of the autoinducer (AI) 3‐oxo‐hexanoyl‐L ‐homoserine lactone. In this system, LuxR is an AI‐dependent positive regulator of the lux operon, which encodes the AI synthase. This creates a positive feedback loop common in many bacterial species that exhibit QS‐controlled gene expression. Applying a combination of modeling and experimental analyses, we provide evidence for a LuxR autoregulatory feedback loop that allows LuxR to increase its concentration in the cell during the switch to full lux activation. Using synthetic lux gene fragments, with or without the AI synthase gene, we show that the buildup of LuxR provides more sensitivity to increasing AI, and promotes the induction process. Elevated LuxR levels buffer against spurious variations in AI levels ensuring a robust response that endows the system with enhanced hysteresis. LuxR autoregulation also allows for two distinct responses within the same cell population.  相似文献   

18.
The present contribution is devoted to studying the electrical noise of Acer pseudoplatanus cells in culture suspensions. Spontaneous voltage noise of the cells was recorded by means of a microelectrode inserted in the vacuole. The small signal impedance of the cell was measured so that it was possible to study the intensity spectra of the noise. We recorded intensity spectra with cells incubated in 10−3 molar gramicidin A. Difference spectra showed characteristics of a channel noise. By using the calculated conductance of gramicidin A in an artificial membrane, and by simplifying assumptions for the ionic transports through plasmalemma and tonoplast, we were able to estimate the electrochemical potential difference for K+ ions across the plasmalemma (3.2 ± 1 millivolt).  相似文献   

19.
20.
Two-dimensional polyacrylamide gel electrophoresis can be used to identify structural forms of RNA such as linear RNA, circular RNA, interlocked circles and lariats. The procedure is based upon the characteristic migration behaviour of the degradation products derived from the intact structures present already before the start of the experiment or formed during or after electrophoresis in the first dimension. After autoradiography to detect the positions of the radiolabeled RNA molecules, circles broken during electrophoresis of the first dimension give rise to horizontal lines touching the diagonal formed by linear RNAs at a point corresponding to the length of the RNA circle from which it was derived. Products derived from interlocked RNA circles by breakage after completion of the first dimension appear on a vertical line underneath the intact complex and consist of free RNA circles and their linear derivatives. Broken lariats give rise to two lines depending on the location of the break. Lariats with broken tails are present on a line to a position that corresponds to the length of their tail and that runs parallel to the diagonal formed by linear products. Lariats with a broken eye form a line running from the position of the intact product to the diagonal formed by the linear RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号