首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2020,118(8):1861-1875
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.  相似文献   

2.
Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.  相似文献   

3.
Genetically encoded calcium indicators have become instrumental in imaging signaling in complex tissues and neuronal circuits in vivo. Despite their importance, structure-function relationships of these sensors often remain largely uncharacterized due to their artificial and multimodular composition. Here, we describe a combination of protein engineering and kinetic, spectroscopic, and biophysical analysis of the Förster resonance energy transfer (FRET)-based calcium biosensor TN-XXL. Using fluorescence spectroscopy of engineered tyrosines, we show that two of the four calcium binding EF-hands dominate the FRET output of TN-XXL and that local conformational changes of these hands match the kinetics of FRET change. Using small-angle x-ray scattering and NMR spectroscopy, we show that TN-XXL changes from a flexible elongated to a rigid globular shape upon binding calcium, thus resulting in FRET signal output. Furthermore, we compare calcium titrations using fluorescence lifetime spectroscopy with the ratiometric approach and investigate potential non-FRET effects that may affect the fluorophores. Thus, our data characterize the biophysics of TN-XXL in detail and may form a basis for further rational engineering of FRET-based biosensors.  相似文献   

4.
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anticancer chemotherapy. Here, we used fluorescence resonance energy transfer (FRET) spectroscopy to delineate the structural rearrangements the two nucleotide binding domains (NBDs) are undergoing during the catalytic cycle. Pairs of cysteines were introduced into equivalent regions in the N- and C-terminal NBDs for labeling with fluorescent dyes for ensemble and single-molecule FRET spectroscopy. In the ensemble FRET, a decrease of the donor to acceptor (D/A) ratio was observed upon addition of drug and ATP. Vanadate trapping further decreased the D/A ratio, indicating close association of the two NBDs. One of the cysteine mutants was further analyzed using confocal single-molecule FRET spectroscopy. Single Pgp molecules showed fast fluctuations of the FRET efficiencies, indicating movements of the NBDs on a time scale of 10-100 ms. Populations of low, medium, and high FRET efficiencies were observed during drug-stimulated MgATP hydrolysis, suggesting the presence of at least three major conformations of the NBDs during catalysis. Under conditions of vanadate trapping, most molecules displayed high FRET efficiency states, whereas with cyclosporin, more molecules showed low FRET efficiency. Different dwell times of the FRET states were found for the distinct biochemical conditions, with the fastest movements during active turnover. The FRET spectroscopy observations are discussed in context of a model of the catalytic mechanism of Pgp.  相似文献   

5.
Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand binding.  相似文献   

6.
BackgroundFörster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.MethodsWe demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.ResultspEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.ConclusionsFRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.General significanceShows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.  相似文献   

7.
Histograms of single-molecule Förster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coexistence of several static structures. To this end, we introduce burst variance analysis (BVA), a method that detects dynamics by comparing the standard deviation of FRET from individual molecules over time to that expected from theory. Both simulations and experiments on DNA hairpins show that BVA can distinguish between static and dynamic sources of heterogeneity in single-molecule FRET histograms and can test models of dynamics against the observed standard deviation information. Using BVA, we analyzed the fingers-closing transition in the Klenow fragment of Escherichia coli DNA polymerase I and identified substantial dynamics in polymerase complexes formed prior to nucleotide incorporation; these dynamics may be important for the fidelity of DNA synthesis. We expect BVA to be broadly applicable to single-molecule FRET studies of molecular structure and to complement approaches such as probability distribution analysis and fluorescence correlation spectroscopy in studying molecular dynamics.  相似文献   

8.
《Biophysical journal》2021,120(21):4842-4858
Förster resonance energy transfer (FRET) and electron paramagnetic resonance (EPR) spectroscopy are complementary techniques for quantifying distances in the nanometer range. Both approaches are commonly employed for probing the conformations and conformational changes of biological macromolecules based on site-directed fluorescent or paramagnetic labeling. FRET can be applied in solution at ambient temperature and thus provides direct access to dynamics, especially if used at the single-molecule level, whereas EPR requires immobilization or work at cryogenic temperatures but provides data that can be more reliably used to extract distance distributions. However, a combined analysis of the complementary data from the two techniques has been complicated by the lack of a common modeling framework. Here, we demonstrate a systematic analysis approach based on rotamer libraries for both FRET and EPR labels to predict distance distributions between two labels from a structural model. Dynamics of the fluorophores within these distance distributions are taken into account by diffusional averaging, which improves the agreement with experiment. Benchmarking this methodology with a series of surface-exposed pairs of sites in a structured protein domain reveals that the lowest resolved distance differences can be as small as ∼0.25 nm for both techniques, with quantitative agreement between experimental and simulated transfer efficiencies within a range of ±0.045. Rotamer library analysis thus establishes a coherent way of treating experimental data from EPR and FRET and provides a basis for integrative structural modeling, including studies of conformational distributions and dynamics of biological macromolecules using both techniques.  相似文献   

9.
10.
F?rster's resonance energy transfer (FRET) can be used to study protein-protein interactions in living cells. Numerous methods to measure FRET have been devised and implemented; however, the accuracy of these methods is unknown, which makes interpretation of FRET efficiency values difficult if not impossible. This problem exists due to the lack of standards with known FRET efficiencies that can be used to validate FRET measurements. The advent of spectral variants of green fluorescent protein and easy access to cell transfection technology suggests a simple solution to this problem: the development of genetic constructs with known FRET efficiencies that can be replicated with high fidelity and freely distributed. In this study, fluorescent protein constructs with progressively larger separation distances between donors and acceptors were generated and FRET efficiencies were measured using fluorescence lifetime spectroscopy, sensitized acceptor emission, and spectral imaging. Since the results from each method were in good agreement, the FRET efficiency value of each construct could be determined with high accuracy and precision, thereby justifying their use as standards.  相似文献   

11.
In this study we introduce the combination of two-color global fluorescence correlation spectroscopy (2CG-FCS) and F?rster resonance energy transfer (FRET) as a very powerful combination for monitoring biochemical reactions on the basis of single molecule events. 2CG-FCS, which is a new variation emerging from the family of fluorescence correlation spectroscopy, globally analyzes the simultaneously recorded auto- and cross-correlation data from two photon detectors monitoring the fluorescence emission of different colors. Overcoming the limitations inherent in mere auto- and cross-correlation analysis, 2CG-FCS is sensitive in resolving and quantifying fluorescent species that differ in their diffusion characteristics and/or their molecular brightness either in one or both detection channels. It is able to account for effects that have often been considered as sources of severe artifacts in two-color and FRET measurements, the most prominent artifacts comprising photobleaching, cross talk, or concentration variations in sample preparation. Because of its very high statistical accuracy, the combination of FRET and 2CG-FCS is suited for high-throughput applications such as drug screening. Employing beam scanning during data acquisition even further enhances this capability and allows measurement times of <2 s. The improved performance in monitoring a FRET sample was verified by following the protease cleavage reaction of a FRET-active peptide. The FRET-inactive subpopulation of uncleaved substrate could be correctly assigned, revealing a substantial portion of inactive or missing acceptor label. The results were compared to those obtained by two-dimensional fluorescence intensity distribution analysis.  相似文献   

12.
The development of a dual receptor detection method for enhanced biosensor monitoring was investigated by analyzing potential fluorescent resonance energy transfer (FRET) pairs. The dual receptor scheme requires the integration of a chemical transducer system with two unique protein receptors that bind to a single biological agent. The two receptors are tagged with special molecular groups (donors and acceptors fluorophores) while the chemical transduction system relies on the well-known mechanisms of FRET. During the binding event, the two FRET labeled receptors dock at the binding sites on the surface of the biological agent. The resulting close proximity of the two fluorophores upon binding will initiate the energy transfer resulting in fluorescence. The paper focuses on the analysis and optimization of the chemical transduction system. A variety of FRET fluorophore pairs were tested in a spectrofluorimeter and promising FRET pairs were then tagged to the protein, avidin and its ligand, biotin. Due to their affinities, the FRET-tagged biomolecules combine in solution, resulting in a stable, fluorescent signal from the acceptor FRET dye with a simultaneous decrease in fluorescent signal from the donor FRET dye. The results indicate that the selected FRET pairs can be utilized in the development of dual receptor sensors.  相似文献   

13.
Development of an ultrasensitive biosensor for biological hazards in the environment is a major need for pollutant control and for the detection of biological warfare. Fluorescence methods combined with immunodiagnostic methods are the most common. To minimize background noise, arising from the unspecific adsorption effect, we have adapted the FRET (frequency resonance energy transfer) effect to the immunofluorescence method. FRET will increase the selectivity of the diagnosis process by introducing a requirement for two different reporter molecules that have to label the antigen surface at a distance that will enable FRET. Utilizing the multiparameter capability of flow cytometry analysis to analyze the double-labeling/FRET immunostaining will lead to a highly selective and sensitive diagnostic method. This work examined the FRET interaction of fluorescence-labeled avidin molecules on biotin-coated microspheres as a model system. As target system, we have used labeled polyclonal antibodies on Bacillus anthracis spores. The antibodies used were purified immunoglobulin G (IgG) molecules raised in rabbits against B. anthracis exosoporium components. The antibodies were fluorescence labeled by a donor-acceptor chromophore pair, alexa488 as a donor and alexa594 as an acceptor. On labeling the spores with alexa488-IgG as a donor and alexa594-IgG as an acceptor, excitation at 488 nm results in quenching of the alexa-488 fluorescence (E(q) = 35%) and appearance of the alexa594 fluorescence (E(s) = 22%), as detected by flow cytometry analysis. The FRET effect leads to a further isolated gate (FL1/FL3) for the target spores compared to competitive spores such as B. thuringiensis subsp. israelensis and B. subtilis. This new approach, combining FRET labeling and flow cytometry analysis, improved the selectivity of the B. anthracis spores by a factor of 10 with respect to B. thuringiensis subsp. israelensis and a factor of 100 with respect to B. subtilis as control spores.  相似文献   

14.
We reacted a fluorescent probe, N-methyl-2-anilino-6-naphthalenesulfonyl chloride (MNS-Ci), with a specific lysine residue of porcine cardiac myosin located in the S-2 region of myosin. We performed fluorescence resonance energy transfer (FRET) spectroscopy measurements between this site and three loci (Cys109, Cys125, and Cys154) located within different myosin light-chain 2s (LC2) bound to the myosin "head". We used LC2s from rabbit skeletal muscle myosin (Cys125), chicken gizzard smooth muscle myosin (Cys109), or a genetically engineered mutant of chicken skeletal muscle myosin (Cys154). The atomic coordinates of these LC2 loci can be closely approximated, and the FRET measurements were used to determine the position of the MNS-labeled lysine with respect to the myosin head. The C-terminus of myosin subfragment-1 determined by Rayment et al. ends abruptly after a sharp turn of its predominantly alpha-helical structure. We have constructed a model based on our FRET distance data combined with the known structure of chicken skeletal muscle myosin subfragment-1. This model suggests that the loci that bracket the head-rod junction will be useful for evaluating dynamic changes in this region.  相似文献   

15.
16.
Single molecule fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy were used to investigate DNA looping by NgoMIV restriction endonuclease. Using a linear double-stranded DNA (dsDNA) molecule labeled with a fluorescence donor molecule, Cy3, and fluorescence acceptor molecule, Cy5, and by varying the concentration of NgoMIV endonuclease from 0 to 3 x 10(-6) M, it was possible to detect and determine diffusion properties of looped DNA/protein complexes. FRET efficiency distributions revealed a subpopulation of complexes with an energy transfer efficiency of 30%, which appeared upon addition of enzyme in the picomolar to nanomolar concentration range (using 10(-11) M dsDNA). The concentration dependence, fluorescence burst size analysis, and fluorescence correlation analysis were all consistent with this subpopulation arising from a sequence specific interaction between an individual enzyme and a DNA molecule. A 30% FRET efficiency corresponds to a distance of approximately 65 A, which correlates well with the distance between the ends of the dsDNA molecule when bound to NgoMIV according to the crystal structure of this complex. Formation of the looped complexes was also evident in measurements of the diffusion times of freely diffusing DNA molecules with and without NgoMIV. At very high protein concentrations compared to the DNA concentration, FRET and fluorescence correlation spectroscopy results revealed the formation of larger DNA/protein complexes.  相似文献   

17.
Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ~35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.  相似文献   

18.
BACKGROUND: Fluorescence imaging spectroscopy is a powerful but under-utilized tool. This article gives perspective on the use of imaging spectroscopy, and provides two examples of imaging spectroscopy done with a prism-based system. The intent is to give insight into the power of imaging spectroscopy when used in combination with other imaging techniques. In particular, studies of intact coral photobleaching and beads designed to show energy transfer are reported. In the bead study, spectroscopic lifetime imaging was performed at each photobleaching step. RESULTS: Spectroscopic photobleaching of the hard coral, Montastrea annularis, revealed two spectral regions. A region in the red portion of the spectrum bleached rapidly while progressively increasing fluorescence was observed over a wide portion of the spectrum. This behavior is consistent with current theories for the role of fluorescent proteins in corals.Following a photobleaching study of beads designed to exhibit energy transfer with imaging spectroscopic fluorescence lifetime imaging microscopy (ISFLIM) allowed unambiguous assignment of fluorescence resonance energy transfer (FRET). The data in this experiment indicated that most of the commonly used markers of FRET would have been inconclusive. The ability of the ISFLIM to look at all regions of the spectrum, particularly the acceptor region, allowed FRET to be assigned. CONCLUSIONS: Fluorescence imaging spectroscopy is a rapidly advancing technology, uniquely suited to the flexible detection of dyes over a wide range of wavelengths.  相似文献   

19.
Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM).  相似文献   

20.
Ensemble Förster resonance energy transfer (FRET) results can be analyzed in a variety of ways. Due to experimental artifacts, the results obtained from different analysis approaches are not always the same. To determine the optimal analysis approach to use for Nanodrop fluorometry, we have performed both ensemble and single-molecule FRET studies on oligomers of double-stranded DNA. We compared the single-molecule FRET results with those obtained using various ensemble FRET analysis approaches. This comparison shows that for Nanodrop fluorometry, analyzing the increase of the acceptor fluorescence is less likely to introduce errors in estimates of FRET efficiencies compared with analyzing the fluorescence intensity of the donor in the absence and presence of the acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号