首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:分析自身免疫性疾病患者抗核抗体谱检测结果,探讨抗核抗体谱检测在自身免疫性疾病诊断中的应用。方法:分别采用间接免疫荧光法和免疫印迹法检测130例自身免疫性疾病患者和20例健康人的ANA和抗核抗体谱。结果:ANA在各种自身免疫性疾病中均有一定的阳性检出率,ANA在SLE中的检出率最高,阳性率为89.6%,其次为ITP、MCTD和SS。抗核抗体谱中的各种自身抗体在不同的自身免疫性疾病中有不同的敏感性和特异性。结论:采用间接免疫荧光法对ANA的检测对自身免疫性疾病有重要的筛查意义,抗核抗体谱检测对自身免疫性疾病的诊断有重要意义。  相似文献   

2.
3.
自身免疫性疾病是由于机体正常免疫耐受功能受损导致免疫系统对自身组织结构和功能的破坏,并出现一定临床表现的一类疾病.调节性T细胞作为一类具有负向免疫调节功能的淋巴细胞亚群在免疫自稳和免疫耐受中起关键作用,既能抑制不恰当的免疫反应,又能限制免疫应答的范围、程度及作用时间,对效应性T细胞的增殖及免疫活性的发挥产生抑制,因此在许多自身免疫性疾病的发病中扮演重要角色.近年来的研究表明调节性T细胞可以通过细胞接触、分泌细胞因子、基因调控等多种途径发挥作用,在不同的疾病,不同的内环境因素作用下可以表现出不同的特点,转录因子Foxp3作为调节性T细胞的特异性标志是其分化成熟及功能维持的根本.  相似文献   

4.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

5.
BACKGROUND: Identification of antinuclear antibodies (ANAs) has large clinical importance for the assessment of autoimmune diseases. HEp-2 cell preparations on microscopic slides are commonly used as antigenic substrate. Methods used for cell preparation are important for ANA pattern analysis; however, these methods differ widely and are mostly not specified. METHODS: HEp-2 cells were fixed using acetic acid-ethanol, methanol-acetone, acetone, formaldehyde, paraformaldehyde, or glutaraldehyde. Morphological analysis was done after haematoxylin-eosin staining and DAPI-staining of cell nuclei. RESULTS: The results demonstrate a high variability of cell and nuclear morphology depending on the used fixatives. Aldehyde fixatives conserved the cell structures best, acetone fixatives revealed remarkable changes. CONCLUSIONS: After selecting appropriate fixation procedures to preserve nuclear structures further experiments are necessary to find out which fixation procedure preserves the disease-linked antigens the best way and are, therefore, suitable to be used in ANA-testing of AABs.  相似文献   

6.
The immune system is unusual in two respects. It produces billions of new cells daily that traffic throughout the body and cells within the system proliferate rapidly following exposure to an infectious agent. Both of these attributes require that cell production be regulated by cell death. Human diseases characterized by accelerated cell death leading to immunodeficiency disorders or by reduced cell death leading to systemic autoimmune diseases have been identified. In certain autoimmune diseases, the immune system directs its powerful cytotoxic effector mechanisms against specialized cells such as oligodendrocytes in multiple sclerosis, the beta cells of the pancreas in diabetes mellitus and thyrocytes in Hashimoto's thyroiditis. In this review, we examine the cytotoxic effector pathways implicated in cell death in organ specific autoimmune disorders.  相似文献   

7.
NOD样受体在炎症反应中的调控作用   总被引:2,自引:0,他引:2  
席琼  胡巢凤 《生命科学》2010,(5):454-458
天然免疫(innate immunity)是机体免疫系统直接抵御病原体入侵的最初阶段,通过机体自身的特异性模式识别受体(pattern-recognition receptors,PRRs)来识别病原体特有的保守结构病原相关分子模式(pathogen-associated molecular patterns,PAMPs)。细胞内NOD样受体(NLRs)是胞浆型PRRs中的一个重要家族,病原体侵袭细胞可上调其表达,启动机体的免疫应答和炎症反应,在机体天然免疫应答中发挥独特的功能。最近有研究证明,NLRs的突变与一些人类免疫性疾病相关,并且在细菌感染和炎症反应的控制中起重要作用。该文将讨论NLRs在炎症疾病中的调控作用。  相似文献   

8.
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.  相似文献   

9.
固有免疫系统利用模式识别受体识别病原相关分子模式。近期研究发现,外源DNA能够被宿主细胞中多种DNA受体识别,激活多种信号通路,上调Ⅰ型干扰素和促炎性细胞因子的表达。基于DNA的免疫识别在激活宿主抗感染免疫过程中起重要作用,因此仅对现已报道的DNA受体进行概述,同时对DNA的免疫识别与自身免疫病之间的关系进行探讨。  相似文献   

10.
Therapeutic antibodies directed against tumor necrosis factor alpha (TNF-alpha) for the treatment of rheumatoid arthritis, and against the human EGF receptor-2 (HER2) receptor for the treatment of breast cancer have provided significant clinical benefit for the patients. The success of these antibodies has also provided strong support for the possibility that increased activity of cytokines or growth factors is causally implicated in a variety of human diseases. Interferon alpha (IFN-alpha) is induced by viruses (linked by epidemiological studies to autoimmune diseases), has significant direct effects on both epithelial cells and the immune system, and then can be further induced by the autoantibodies and apoptotic cells generated by the actions of IFN-alpha. The direct and deleterious impact on target tissues, the ability to induce an autoimmune response, and the potential for a self-sustaining cycle of induction and damage suggests that IFN-alpha could be a pivotal factor in the development of autoimmune diseases. This review will evaluate the rationale for, possible approaches to, and safety concerns associated with, targeting interferon alpha (IFN-alpha) as a therapeutic strategy for the treatment of autoimmune diseases. While the approach may be applicable to several autoimmune diseases, there will be an emphasis on systemic lupus erythematosus and insulin dependent diabetes mellitus.  相似文献   

11.
Role of inherited defects decreasing Fas function in autoimmunity   总被引:3,自引:0,他引:3  
Fas is a death receptor belonging to the TNFR superfamily and induces cell apoptosis by both activating a caspase cascade and altering mitochondria. In the immune system, Fas is involved in the switching-off of the immune responses and cell mediated cytotoxicity. In humans, genetic defects decreasing Fas function cause the Autoimmune Lymphoproliferative Syndrome (ALPS) where autoimmunities are associated with accumulation of polyclonal lymphocytes in the secondary lymphoid tissues and expansion of T cells lacking both CD4 and CD8 (DN cells). Expansion of DN cells is absent in an ALPS variant, named Dianzani's Autoimmune Lymphoproliferative Disease (DALD). The observation that DALD patients' families display increased frequency of autoimmune diseases different from ALPS suggests that defects of Fas function may also play a role in development of "common" autoimmune diseases. This possibility is supported by detection of defective Fas function in substantial proportions of patients with the multiple autoimmune syndrome or aggressive forms of type 1 diabetes or multiple sclerosis. This article reviews data suggesting that development of autoimmune/lymphoproliferative patterns may involve several alterations hitting the Fas system, but might also involve alterations in other systems contributing to the switching-off or proliferation of lymphocytes.  相似文献   

12.
固有免疫细胞是机体抵御病原微生物的首道防线,亦是机体有效启动和维持免疫反应的重要参与者,而模式识别受体是固有免疫细胞发挥免疫功能的重要免疫分子,因此,机体对固有免疫细胞及其模式识别受体的精细调控尤为重要。表观遗传学是近年研究热点,其在固有免疫调节中的作用逐渐受到重视。就近年表观遗传学中的DNA甲基化、组蛋白共价修饰及非编码RNA等在调节固有免疫细胞分化发育及其模式识别受体的相关研究作一简述,以期为感染、炎症、自身免疫病等研究与防治提供新的思路和策略。  相似文献   

13.
The immune system has evolved a plethora of innate receptors that detect microbial DNA and RNA, including Toll-like receptors in the endosomal compartment and RIG-I-like receptors and Nod-like receptors in the cytosol. Here we discuss the recognition of and responses to non-self nucleic acids via these receptors as well as their involvement in autoimmune diseases.  相似文献   

14.
Leukocytes are the cells of the immune system and are centrally involved in defense against infection, in autoimmune disease, allergy, inflammation, and in organ graft rejection. Lymphomas and leukemias are malignancies of leukocytes, and the immune system is almost certainly involved in most other cancers. Each leukocyte expresses a selection of cell surface glycoproteins and glycolipids which mediate its interaction with antigen, with other components of the immune system, and with other tissues. It is therefore not surprising that the leukocyte surface molecules (CD molecules) have provided targets for diagnosis and therapy. Among the "celebrities" are CD20, a target for lymphoma therapeutic antibodies which earns $2 billion annually (and makes a significant difference to lymphoma patients), and CD4, the molecule used by the human immunodeficiency virus (HIV) as an entry portal into cells of the immune system. This short review provides a background to the CD molecules and antibodies against them, and summarizes research, diagnostic, and therapeutic applications of antibodies against these molecules.  相似文献   

15.
Muscle-specific kinase (MuSK) belongs to the nicotinic acetylcholine receptor complex which is targeted by pathogenic autoantibodies causing Myasthenia gravis. While up to 95% of patients with generalized Myasthenia gravis were shown to be positive for acetylcholine receptor-specific autoantibodies, up to 70% of the remaining patients develop autoantibodies against MuSK. Discrimination of the autoantibody specificity is important for therapy of Myasthenia gravis. Recently, the new automatic fluorescence assessment platform AKLIDES has been developed for immunofluorescence-based diagnostics of autoimmune diseases. In order to establish an AKLIDES procedure for the detection of MuSK-specific autoantibodies (anti-MuSK), we developed a recombinant HEp-2 cell clone expressing the human MuSK cDNA. Here we show at the mRNA and protein level that the cell clone HEp-2 M4 stably expresses human MuSK. We provide evidence for a localization of MuSK at the cell membrane. Using cell clone HEp-2 M4 on the AKLIDES system, we investigated 34 patient sera that were previously tested anti-MuSK positive by radioimmunoassay as positive controls. As negative controls, we tested 29 acetylcholine receptor-positive but MuSK-negative patient sera, 30 amytrophic lateral sclerosis (ALS) patient sera and 45 blood donors. HEp-2 M4 cells revealed a high specificity for the detection of MuSK autoantibodies from 25 patient sera assessed by a specific pattern on HEp-2 M4 cells. By using appropriate cell culture additives, the fraction of cells stained positive with anti-MuSK containing sera can be increased from 2–16% to 10–48%, depending on the serum. In conclusion, we provide data showing that the novel recombinant cell line HEp-2 M4 can be used to screen for anti-MuSK with the automatic AKLIDES system.  相似文献   

16.
《Genomics》2021,113(4):2023-2031
Cells from our immune system detect and kill pathogens to protect our body against various diseases. However, current methods for determining cell types have some major limitations, such as being time-consuming and with low throughput, etc. Immune cells that are associated with cancer tissues play a critical role in revealing tumor development. Identifying the immune composition within tumor microenvironment in a timely manner will be helpful in improving clinical prognosis and therapeutic management for cancer. Although unsupervised clustering approaches have been prevailing to process scRNA-seq datasets, their results vary among studies with different input parameters and sizes, and the identification of the cell types of the clusters is still very challenging. Genes in human genome can be aligned to chromosomes with specific orders. Hence, we hypothesize incorporating this information into our learning model will potentially improve the cell type classification performance. In order to utilize gene positional information, we introduced ChrNet, a novel chromosome-specific re-trainable supervised learning method based on one-dimensional convolutional neural network (1D-CNN). By benchmarking with several models, our model shows superior performance in immune cell type profiling with larger than 90% accuracy. It is expected that this approach can become a reference architecture for other cell type classification methods. Our ChrNet tool is available online at: https://github.com/Krisloveless/ChrNet.  相似文献   

17.
Chen J  Liu X 《Cellular immunology》2009,254(2):85-90
Interferon gamma (IFNgamma) plays a central role in the immune response against infection and tumur immune surveillance. Its functions include not only activation of the host immune system to control microbial infections but also repression of autoimmune responses by turning on T-regulatory cells and increasing T effector cell apoptosis. Defects in IFNgamma and IFNgamma receptor genes have been associated with autoimmune diseases such as rheumatoid arthritis, type 1 diabetes and multiple sclerosis. However, treatment of autoimmune diseases by supplementing with IFNgamma has been satisfactory due to its broad biological effects. Instead, its target T-regulatory cells may be used for the clinical treatment of autoimmune diseases. Future study could also focus on promotion of the beneficial effects of IFNgamma and blocking those unwanted IFNgamma-induced activities.  相似文献   

18.
Toll样受体(Toll-like receptors, TLRs)在先天免疫系统中广泛表达,可通过促进抗原提呈细胞(antigen presenting cells,APC)共刺激分子的表达从而间接导致T细胞活化。然而研究发现,TLR也可在T细胞中表达,并可在没有APC的情况下直接调节T细胞的代谢与功能。本文综述了TLR信号对不同T细胞亚群代谢和免疫功能的直接调控作用,为T细胞介导的癌症及自身免疫病等疾病的预防和治疗提供了新的思路。  相似文献   

19.
The molecular mechanism which enables activated immune cells to cross the blood-retinal barrier in spontaneous autoimmune uveitis is yet to be unraveled. Equine recurrent uveitis is the only spontaneous animal model allowing us to investigate the autoimmune mediated transformation of leukocytes in the course of this sight threatening disease. Hypothesizing that peripheral blood immune cells change their protein expression pattern in spontaneous autoimmune uveitis, we used DIGE to detect proteins with altered abundance comparing peripheral immune cells of healthy and ERU diseased horses. Among others, we found a significant downregulation of talin 1 in peripheral blood granulocytes of ERU specimen, pointing to changes in β integrin activation and indicating a significant role of the innate immune system in spontaneous autoimmune diseases.  相似文献   

20.
TLR-dependent T cell activation in autoimmunity   总被引:1,自引:0,他引:1  
Autoimmune disease can develop as a result of a breakdown in immunological tolerance, leading to the activation of self-reactive T cells. There is an established link between infection and human autoimmune diseases. Furthermore, experimental autoimmune diseases can be induced by autoantigens that are administered together with complete Freund's adjuvant, which contains killed Mycobacterium tuberculosis; in some cases, these bacteria can be replaced by individual pathogen-associated molecular patterns (PAMPs). Exogenous PAMPs and endogenous danger signals from necrotic cells bind to pattern recognition receptors (including Toll-like receptors) and activate signalling pathways in innate immune cells and in T cells. This leads to pro-inflammatory cytokine production and T cell activation, which are now considered to be major factors in the development of autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号