首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Introduction

In patients with obstructive jaundice, biliary drainage sometimes fails to result in improvement. A pharmaceutical-grade choleretic herbal medicine, Inchinkoto (ICKT), has been proposed to exert auxiliary effects on biliary drainage; however, its effects are variable among patients.

Objectives

The aim of this study is to explore serum biomarkers that are associated with pharmaceutical efficacy of ICKT.

Methods

Obstructive jaundice patients who underwent external biliary decompression were enrolled (n?=?37). ICKT was given orally 3 times a day at daily dose of 7.5 g. Serum and bile samples were collected before, 3 h after, and 24 h after ICKT administration. The concentrations of total bilirubin, direct bilirubin, and total bile acid in bile specimens were measured. Metabolites in serum samples were comprehensively profiled using LC–MS/MS and GC–MS/MS. Pharmacokinetic analysis of major ICKT components was also performed.

Results

ICKT administration significantly decreased serum ALT and increased bile volume after 24 h. The serum concentrations of ICKT components were not well correlated with the efficacy of ICKT. However, the ratio of 2-hydroxyisobutyric acid to arachidonic acid and the ratio of glutaric acid to niacinamide, exhibited good performance as biomarkers for the efficacy of ICKT on bile flow and ALT, respectively. Additionally, comprehensive correlation analysis revealed that serum glucuronic acid was highly correlated with serum total bilirubin, suggesting that this metabolite may be deeply involved in the pathogenesis of jaundice.

Conclusions

The present study indicates that ICKT is efficacious and provides candidates for predicting ICKT efficacy. Further validation studies are warranted.
  相似文献   

2.
3.

Objectives

Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism.

Results

The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2.

Conclusions

Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
  相似文献   

4.

Background

In order to optimally integrate the use of high-throughput sequencing (HTS) as a tool in clinical diagnostics of likely monogenic disorders, we have created a multidisciplinary “Genome Clinic Task Force” at the University Hospitals of Geneva, which is composed of clinical and molecular geneticists, bioinformaticians, technicians, bioethicists, and a coordinator.

Methods and results

We have implemented whole exome sequencing (WES) with subsequent targeted bioinformatics analysis of gene lists for specific disorders. Clinical cases of heterogeneous Mendelian disorders that could potentially benefit from HTS are presented and discussed during the sessions of the task force. Debate concerning the interpretation of identified variants and the content of the final report constitutes a major part of the task force’s work. Furthermore, issues related to bioethics, genetic counseling, quality control, and reimbursement are also addressed.

Conclusions

This multidisciplinary task force has enabled us to create a platform for regular exchanges between all involved experts in order to deal with the multiple complex issues related to HTS in clinical practice and to continuously improve the diagnostic use of HTS. In addition, this task force was instrumental to formally approve the reimbursement of HTS for molecular diagnosis of Mendelian disorders in Switzerland.
  相似文献   

5.

Background

Intestinal bacteria are known to regulate bile acid (BA) homeostasis via intestinal biotransformation of BAs and stimulation of the expression of fibroblast growth factor 19 through intestinal nuclear farnesoid X receptor (FXR). On the other hand, BAs directly regulate the gut microbiota with their strong antimicrobial activities. It remains unclear, however, how mammalian BAs cross-talk with gut microbiome and shape microbial composition in a dynamic and interactive way.

Results

We quantitatively profiled small molecule metabolites derived from host-microbial co-metabolism in mice, demonstrating that BAs were the most significant factor correlated with microbial alterations among all types of endogenous metabolites. A high-fat diet (HFD) intervention resulted in a rapid and significant increase in the intestinal BA pool within 12 h, followed by an alteration in microbial composition at 24 h, providing supporting evidence that BAs are major dietary factors regulating gut microbiota. Feeding mice with BAs along with a normal diet induced an obese phenotype and obesity-associated gut microbial composition, similar to HFD-fed mice. Inhibition of hepatic BA biosynthesis under HFD conditions attenuated the HFD-induced gut microbiome alterations. Both inhibition of BAs and direct suppression of microbiota improved obese phenotypes.

Conclusions

Our study highlights a liver–BA–gut microbiome metabolic axis that drives significant modifications of BA and microbiota compositions capable of triggering metabolic disorders, suggesting new therapeutic strategies targeting BA metabolism for metabolic diseases.
  相似文献   

6.
Osteopetrosis     
Progressive familial intrahepatic cholestasis (PFIC) refers to heterogeneous group of autosomal recessive disorders of childhood that disrupt bile formation and present with cholestasis of hepatocellular origin. The exact prevalence remains unknown, but the estimated incidence varies between 1/50,000 and 1/100,000 births. Three types of PFIC have been identified and related to mutations in hepatocellular transport system genes involved in bile formation. PFIC1 and PFIC2 usually appear in the first months of life, whereas onset of PFIC3 may also occur later in infancy, in childhood or even during young adulthood. Main clinical manifestations include cholestasis, pruritus and jaundice. PFIC patients usually develop fibrosis and end-stage liver disease before adulthood. Serum gamma-glutamyltransferase (GGT) activity is normal in PFIC1 and PFIC2 patients, but is elevated in PFIC3 patients. Both PFIC1 and PFIC2 are caused by impaired bile salt secretion due respectively to defects in ATP8B1 encoding the FIC1 protein, and in ABCB11 encoding the bile salt export pump protein (BSEP). Defects in ABCB4, encoding the multi-drug resistant 3 protein (MDR3), impair biliary phospholipid secretion resulting in PFIC3. Diagnosis is based on clinical manifestations, liver ultrasonography, cholangiography and liver histology, as well as on specific tests for excluding other causes of childhood cholestasis. MDR3 and BSEP liver immunostaining, and analysis of biliary lipid composition should help to select PFIC candidates in whom genotyping could be proposed to confirm the diagnosis. Antenatal diagnosis can be proposed for affected families in which a mutation has been identified. Ursodeoxycholic acid (UDCA) therapy should be initiated in all patients to prevent liver damage. In some PFIC1 or PFIC2 patients, biliary diversion can also relieve pruritus and slow disease progression. However, most PFIC patients are ultimately candidates for liver transplantation. Monitoring of hepatocellular carcinoma, especially in PFIC2 patients, should be offered from the first year of life. Hepatocyte transplantation, gene therapy or specific targeted pharmacotherapy may represent alternative treatments in the future.  相似文献   

7.

Introduction

There is still a clear need for a widely available, inexpensive and reliable method to diagnose Alzheimer’s disease (AD) and monitor disease progression. Liquid chromatography–mass spectrometry (LC-MS) is a powerful analytic technique with a very high sensitivity and specificity.

Objectives

The aim of the present study is to measure concentrations of 20 bile acids using the novel Kit from Biocrates Life Sciences based on LC-MS technique.

Methods

Twenty bile acid metabolites were quantitatively measured in plasma of 30 cognitively healthy subjects, 20 patients with mild cognitive impairment (MCI) and 30 patients suffering from AD.

Results

Levels of lithocholic acid were significantly enhanced in plasma of AD patients (50?±?6 nM, p?=?0.004) compared to healthy controls (32?±?3 nM). Lithocholic acid plasma levels of MCI patients (41?±?4 nM) were not significantly different from healthy subjects or AD patients. Levels of glycochenodeoxycholic acid, glycodeoxycholic acid and glycolithocholic acid were significantly higher in AD patients compared to MCI patients (p?<?0.05). All other cholic acid metabolites were not significantly different between healthy subjects, MCI patients and AD patients. ROC analysis shows an overall accuracy of about 66%. Discriminant analysis was used to classify patients and we found that 15/23 were correctly diagnosed. We further showed that LCA levels increased by about 3.2 fold when healthy subjects converted to AD patients within a 8–9 year follow up period. Pathway analysis linked these changes to a putative toxic cholesterol pathway.

Conclusion

In conclusion, 4 bile acids may be useful to diagnose AD in plasma samples despite limitations in diagnostic accuracy.
  相似文献   

8.

Introduction

Chronic hepatitis B virus (HBV) infection is the main etiologic risk factor for hepatocellular carcinoma (HCC). Early studies indicated that the increase of omega-6-derived oxylipins may be involved in the pathogenesis of HBV-related HCC, yet their changes during the distinct clinical phases of chronic HBV infection remain unclear. To fill this gap, in this study we investigated the omega-6-derived oxylipin profiles in patients with three major clinical stages of chronic HBV infection (chronic hepatitis B, liver cirrhosis, and HCC).

Methods

Eighteen omega-6-derived oxylipins were quantified in serum samples of 34 patients with chronic hepatitis B, 46 patients with HBV-related liver cirrhosis, 38 patients with HBV-related HCC, and 50 healthy controls using liquid chromatography tandem mass spectrometry.

Results

Seven oxylipins were found to be altered in patients with HBV-related liver diseases, including 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME), 12,13-DiHOME, 14,15-dihydroxyeicosatrienoic acid (14,15-DiHETrE), 13-hydroxyoctadecadienoic acid (13-HODE), 12-hydroxyeicosatetraenoic acid (12-HETE), 11-HETE, and thromboxane B2 (TXB2). Of these, three oxylipins derived from the cytochrome P450 (CYP450) pathways including 9,10-DiHOME, 12,13-DiHOME, and 14,15-DiHETrE were found to be associated with the levels of α-fetoprotein (AFP), a tumor marker. In combination with AFP, age, and gender, a combination of these seven differential oxylipins could significantly enhance the prediction of HBV-related liver diseases, particularly for liver cirrhosis (p?<?0.05).

Conclusion

This study for the first time shows the correlations between CYP450-derived oxylipins and the progression of chronic HBV infection, and sheds a new light on the surveillance of HBV-related live diseases using oxylipins.
  相似文献   

9.

Background

Detection of copy number variants (CNVs) is an important aspect of clinical testing for several disorders, including Duchenne muscular dystrophy, and is often performed using multiplex ligation-dependent probe amplification (MLPA). However, since many genetic carrier screens depend instead on next-generation sequencing (NGS) for wider discovery of small variants, they often do not include CNV analysis. Moreover, most computational techniques developed to detect CNVs from exome sequencing data are not suitable for carrier screening, as they require matched normals, very large cohorts, or extensive gene panels.

Methods

We present a computational software package, geneCNV (http://github.com/vkozareva/geneCNV), which can identify exon-level CNVs using exome sequencing data from only a few genes. The tool relies on a hierarchical parametric model trained on a small cohort of reference samples.

Results

Using geneCNV, we accurately inferred heterozygous CNVs in the DMD gene across a cohort of 15 test subjects. These results were validated against MLPA, the current standard for clinical CNV analysis in DMD. We also benchmarked the tool’s performance against other computational techniques and found comparable or improved CNV detection in DMD using data from panels ranging from 4,000 genes to as few as 8 genes.

Conclusions

geneCNV allows for the creation of cost-effective screening panels by allowing NGS sequencing approaches to generate results equivalent to bespoke genotyping assays like MLPA. By using a parametric model to detect CNVs, it also fulfills regulatory requirements to define a reference range for a genetic test. It is freely available and can be incorporated into any Illumina sequencing pipeline to create clinical assays for detection of exon duplications and deletions.
  相似文献   

10.
11.

Introduction

Neonatal cholestatic disorders are a group of hepatobiliary diseases occurring in the first 3 months of life. The most common causes of neonatal cholestasis are infantile hepatitis syndrome (IHS) and biliary atresia (BA). The clinical manifestations of the two diseases are too similar to distinguish them. However, early detection is very important in improving the clinical outcome of BA. Currently, a liver biopsy is the only proven and effective method used to differentially diagnose these two similar diseases in the clinic. However, this method is invasive. Therefore, sensitive and non-invasive biomarkers are needed to effectively differentiate between BA and IHS. We hypothesized that urinary metabolomics can produce unique metabolite profiles for BA and IHS.

Objectives

The aim of this study was to characterize urinary metabolomic profiles in infants with BA and IHS, and to identify differences among infants with BA, IHS, and normal controls (NC).

Methods

Urine samples along with patient characteristics were obtained from 25 BA, 38 IHS, and 38 NC infants. A non-targeted gas chromatography–mass spectrometry (GC–MS) metabolomics method was used in conjunction with orthogonal partial least squares discriminant analysis (OPLS-DA) to explore the metabolomic profiles of BA, IHS, and NC infants.

Results

In total, 41 differentially expressed metabolites between BA vs. NC, IHS vs. NC, and BA vs. IHS were identified. N-acetyl-d-mannosamine and alpha-aminoadipic acid were found to be highly accurate at distinguishing between BA and IHS.

Conclusions

BA and IHS infants have specific urinary metabolomic profiles. The results of our study underscore the clinical potential of metabolomic profiling to uncover metabolic changes that could be used to discriminate BA from IHS.
  相似文献   

12.

Introduction

Photosensitization is a common clinical sign in cows suffering from liver damage caused by the mycotoxin sporidesmin. This disease, called facial eczema (FE), is of major importance in New Zealand. Current techniques for diagnosing animals with subclinical sporidesmin-induced liver damage (i.e. without photosensitization) are nonspecific. In addition, little is known of the mechanisms involved in sporidesmin resistance, nor the early effects seen following low-dose sporidesmin intoxication.

Objective

The objective of this study was to identify individual metabolites or metabolic profiles that could be used as serum markers for early stage FE in lactating cows.

Methods

Results are presented from a 59-day sporidesmin challenge in Friesian-cross dairy cows. Serum metabolite profiles were obtained using reversed phase ultra-performance liquid chromatography (UPLC) electrospray ionization mass spectrometry (MS) and UPLC tandem MS. Multivariate and time series analyses were used to assess the data.

Results

Statistical analysis, both with and without the temporal component, could distinguish the profiles of animals with clinical signs from the others, but not those affected subclinically. An increase in the concentrations of a combination of taurine- and glycine-conjugated secondary bile acids (BAs) was the most likely cause of the separation. This is the first time that MS methods have been applied to FE and that bile acids changes have been detected in cattle exposed to sporidesmin.

Conclusions

It is well known that BA concentrations increase during cholestasis due to damage to bile ducts and leakage of the bile. This is the first study to investigate metabolomic changes in serum following a sporidesmin challenge. Further work to establish the significance of the elevation of individual BAs concentrations in the serum of early-stage sporidesmin-poisoned cows is necessary.
  相似文献   

13.

Background

Metabolic disorders such as Obesity, Diabetes Type 2 (T2DM) and Inflammatory Bowel Diseases (IBD) are the most prevalent globally. Recently, there has been a surge in the evidence indicating the correlation between the intestinal microbiota and development of these metabolic conditions apart from predisposing genetic and epigenetic factors. Gut microbiome is pivotal in controlling the host metabolism and physiology. But imbalances in the microbiota patterns lead to these disorders via several pathways. Animal and human studies so far have concentrated mostly on metagenomics for the whole microbiome characterization to understand how microbiome supports health in general. However, the accurate mechanisms connecting the metabolic disorders and alterations in gut microbial composition in host and the metabolites employed by the microorganisms in regulating the metabolic disorders is still vague.

Objective

The review delineates the latest findings about the role of gut microbiome to the pathophysiology of Obesity, IBD and Diabetes Mellitus. Here, we provide a brief introduction to the gut microbiome followed by the current therapeutic interventions in restoration of the disrupted intestinal microbiota.

Methods

A methodical PubMed search was performed using keywords like “gut microbiome,” “obesity,” “diabetes,” “IBD,” and “metabolic syndromes.” All significant and latest publications up to January 2018 were accounted for the review.

Results

Out of the 93 articles cited, 63 articles focused on the gut microbiota association to these disorders. The rest 18 literature outlines the therapeutic approaches in maintaining the gut homeostasis using probiotics, prebiotics and faecal microbial transplant (FMT).

Conclusion

Metabolic disorders have intricate etiology and thus a lucid understanding of the complex host-microbiome inter-relationships will open avenues to novel therapeutics for the diagnosis, prevention and treatment of the metabolic diseases.
  相似文献   

14.

Background

The etiology of more than half of all patients with X-linked intellectual disability remains elusive, despite array-based comparative genomic hybridization, whole exome or genome sequencing. Since short read massive parallel sequencing approaches do not allow the detection of larger tandem repeat expansions, we hypothesized that such expansions could be a hidden cause of X-linked intellectual disability.

Methods

We selectively captured over 1800 tandem repeats on the X chromosome and characterized them by long read single molecule sequencing in 3 families with idiopathic X-linked intellectual disability.

Results

In male DNA samples, full tandem repeat length sequences were obtained for 88–93% of the targets and up to 99.6% of the repeats with a moderate guanine-cytosine content. Read length and analysis pipeline allow to detect cases of >?900?bp tandem repeat expansion. In one family, one repeat expansion co-occurs with down-regulation of the neighboring MIR222 gene. This gene has previously been implicated in intellectual disability and is apparently linked to FMR1 and NEFH overexpression associated with neurological disorders.

Conclusions

This study demonstrates the power of single molecule sequencing to measure tandem repeat lengths and detect expansions, and suggests that tandem repeat mutations may be a hidden cause of X-linked intellectual disability.
  相似文献   

15.

Background

Taxonomic profiling of microbial communities is often performed using small subunit ribosomal RNA (SSU) amplicon sequencing (16S or 18S), while environmental shotgun sequencing is often focused on functional analysis. Large shotgun datasets contain a significant number of SSU sequences and these can be exploited to perform an unbiased SSU--based taxonomic analysis.

Results

Here we present a new program called RiboTagger that identifies and extracts taxonomically informative ribotags located in a specified variable region of the SSU gene in a high-throughput fashion.

Conclusions

RiboTagger permits fast recovery of SSU-RNA sequences from shotgun nucleic acid surveys of complex microbial communities. The program targets all three domains of life, exhibits high sensitivity and specificity and is substantially faster than comparable programs.
  相似文献   

16.

Objectives

To investigate single nucleotide polymorphism (SNP) in the transformation process of phytosterol to valuable steroid intermediates in three steroid-producing Mycobacterium neoaurum strains using deep sequencing and bioinformation analysis.

Results

The assembled contig sequences from RNA sequencing of strains producing 9α-hydroxy-4-androstene-3,17-dione (9OHAD), 1,4-androstadiene-3,17-dione (ADD), and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (1,4-BNA) were analyzed for the presence of putative SNPs for steroid catabolism. 413, 375, and 491 SNPs were detected in the coding domain sequences and non-coding domain sequences of RNA sequencing reads of M. neoaurum strains producing 9OHAD, ADD, and BNA, respectively. Special attention was focused on SNPs associated with genes showing differential expression at proteome level, including the genes for sterol catabolism, glycerol catabolic process, signal transduction systems, transport system and energy metabolism.

Conclusions

The work facilitates the understanding of underlying genetic changes that may be responsible for steroid accumulation in M. neoaurum and is useful for its targeted genetic engineering.
  相似文献   

17.

Background

Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES).

Methods

TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members.

Results

TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS).

Conclusions

TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.
  相似文献   

18.

Background

Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research.

Objective

To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells.

Method and Result

In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade.

Conclusion

In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.
  相似文献   

19.

Background

Appropriate definitionof neural network architecture prior to data analysis is crucialfor successful data mining. This can be challenging when the underlyingmodel of the data is unknown. The goal of this study was to determinewhether optimizing neural network architecture using genetic programmingas a machine learning strategy would improve the ability of neural networksto model and detect nonlinear interactions among genes in studiesof common human diseases.

Results

Using simulateddata, we show that a genetic programming optimized neural network approachis able to model gene-gene interactions as well as a traditionalback propagation neural network. Furthermore, the genetic programmingoptimized neural network is better than the traditional back propagationneural network approach in terms of predictive ability and powerto detect gene-gene interactions when non-functional polymorphismsare present.

Conclusion

This study suggeststhat a machine learning strategy for optimizing neural network architecturemay be preferable to traditional trial-and-error approaches forthe identification and characterization of gene-gene interactionsin common, complex human diseases.
  相似文献   

20.

Background

Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders including hereditary spastic paraplegia (HSP). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remain largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathological processes including axonal defects.

Methods

In this article, we will first review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summarize the findings and insights gained from studies using iPSC-based models, and discuss challenges and future directions.

Results

HSPs, a heterogeneous group of genetic neurodegenerative disorders, exhibit similar pathological changes that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport, recapitulating disease-specific axonal defects.

Conclusions

These patient-derived neurons offer a unique tool to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号