首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome of the Friend murine leukemia virus (Fr‐MLV) contains a 5′ splice site (5′ss) located at 205 nt and a 3′ss located at 5489 nt. In our previous studies, it was shown that if the HindIII–BglII (879–1904 bp) fragment within gag is deleted from the proA8m1 vector, which carries the entire Fr‐MLV sequence, then cryptic splicing of env‐mRNA occurs. Here, attempts were made to identify the genomic segment(s) in this region that is/are essential to correct splicing. First, vectors with a serially truncated HindIII–BglII fragment were constructed. The vector, in which a 38 bp fragment (1612–1649 bp) is deleted or reversed in proA8m1, only produced splice variants. It was found that a 38 nt region within gag contains important elements that positively regulate splicing at the correct splice sites. Further analyses of a series of vectors carrying the 38 bp fragment and its flanking sequences showed that a region (1183–1611 nt) upstream of the 38 nt fragment also contains sequences that positively or negatively influence splicing at the correct splice sites. The SphI–NdeI (5140–5400 bp) fragment just upstream of the 3′ss was deleted from vectors that carried the 38 bp fragment and its flanking sequences, which yielded correctly spliced mRNA; interestingly, these deleted vectors showed cryptic splicing. These findings suggest that the 5140–5400 nt region located just upstream of the 3′ss is required for the splicing function of the 38 nt fragment and its flanking sequences.  相似文献   

2.
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain, and the env gene of A8 is a primary determinant of neuropathogenicity. In order to narrow down the critical region within the env gene that determines neuropathogenicity, we constructed chimeric viruses having chimeric env between A8 and non-neuropathogenic 57 on the background of A8 virus. After replacement of the BamHI (at nucleotide 5715)-AgeI (at nucleotide 6322) fragment of A8 virus with the corresponding fragment of 57, neuropathogenicity was lost. In contrast, the chimeric viruses that have the BamHI (5715)-AgeI (6322) fragment of A8 induced spongiosis in 100% of infected rats at the same or slightly lower intensity than A8 virus. These results indicate that the BamHI (5715)-AgeI (6322) fragment of A8, which contains the signal sequence and the N-terminal half of RBD, is crucial for the induction of spongiform neurodegeneration. In the BamHI (5715)-AgeI (6322) fragment, seven amino acids differed between A8 and 57, one in the signal sequence and six in RBD, which suggests that these amino acids significantly contribute to the neuropathogenicity of A8.  相似文献   

3.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

4.
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.  相似文献   

5.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

6.
7.
The three‐dimensional structure of Rv2607, a putative pyridoxine 5′‐phosphate oxidase (PNPOx) from Mycobacterium tuberculosis, has been determined by X‐ray crystallography to 2.5 Å resolution. Rv2607 has a core domain similar to known PNPOx structures with a flavin mononucleotide (FMN) cofactor. Electron density for two FMN at the dimer interface is weak despite the bright yellow color of the protein solution and crystal. The shape and size of the putative binding pocket is markedly different from that of members of the PNPOx family, which may indicate some significant changes in the FMN binding mode of this protein relative to members of the family. Proteins 2006. © 2005 Wiley‐Liss, Inc.  相似文献   

8.
Chloroplast mRNA translation is regulated by the 5′‐untranslated region (5′‐UTR). Chloroplast 5′‐UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5′‐UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5′‐UTR with the E. coli phage T7 gene 10 5′‐UTR, a highly active 5′‐UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5′‐UTR with a cognate 5′‐coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5′‐UTR and its coding region is important for translational initiation.  相似文献   

9.
10.
11.
Function studies of many proteins are waited to develop after genome sequencing. High‐throughout technology of gene cloning will strongly promote proteins' function studies. Here we describe a ligation‐independent cloning (LIC) method, which is based on the amplification of target gene and linear vector by PCR using phosphorothioate‐modified primers and the digestion of PCR products by λ exonuclease. The phosphorothioate inhibits the digestion and results in the generation of 3′ overhangs, which are designed to form complementary double‐stranded DNA between target gene and linear vector. We compared our phosphorothioate primer cloning methods with several LIC methods, including dU primer cloning, hybridization cloning, T4 DNA polymerase cloning, and in vivo recombination cloning. The cloning efficiency of these LIC methods are as follows: phosphorothioate primer cloning > dU primer cloning > hybridization cloning > T4 DNA polymerase cloning >> in vivo recombination cloning. Our result shows that the 3′ overhangs is a better cohesive end for LIC than 5′ overhang and the existence of 5′phosphate promotes DNA repair in Escherichia coli, resulting in the improvement of cloning efficiency of LIC. We succeeded in constructing 156 expression plasmids of Aeropyrum pernix genes within a week using our method.  相似文献   

12.
Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia‐induced seizures on adenosine A1 and A2A receptors and 5′‐nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real‐time PCR, and 5′‐nucleotidase activity assays. Hyperthermic seizures were induced in 13‐day‐old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [3H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia‐induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [3H]ZM241385 as radioligand, 48 h after hyperthermia‐evoked convulsions. These short‐term changes in A1 and A2A receptors were also accompanied by a loss of 5′‐nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5′‐nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5′‐nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures.

  相似文献   


13.
Arabidopsis thaliana gene At5g06450 encodes a putative DnaQ‐like 3′‐5′ exonuclease domain‐containing protein (AtDECP). The DnaQ‐like 3′‐5′ exonuclease domain is often found as a proofreading domain of DNA polymerases. The overall structure of AtDECP adopts an RNase H fold that consists of a mixed β‐sheet flanked by α‐helices. Interestingly, AtDECP forms a homohexameric assembly with a central six fold symmetry, generating a central cavity. The ring‐shaped structure and comparison with WRN‐exo, the best structural homologue of AtDECP, suggest a possible mechanism for implementing its exonuclease activity using positively charged patch on the N‐terminal side of the homohexameric assembly. The homohexameric structure of AtDECP provides unique information about the interaction between the DnaQ‐like 3′‐5′ exonuclease and its substrate nucleic acids.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The purpose of this study was to determine nucleotide sequences from the 5′ flanking region of the ϵ‐globin gene of selected platyrrhine primates and to analyze the data for phylogenetic information and estimated times of divergence. We report new sequence data for two species of New World monkeys, Callicebus torquatus and Pithecia irrorata. We analyzed these data in conjunction with homologous sequences from other primate species. The data support the hypothesis that the titi monkeys (Callicebus) and seed predators (Tribe Pitheciini) form a clade (Subfamily Pitheciinae), and also provide limited support for that subfamily being allied with the atelines. We also present estimated dates of divergence for the Callicebus and pitheciin lineages. Am. J. Primatol. 48:69–75, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal‐5′‐phosphate (PLP)‐dependent enzyme belonging to the fold type I superfamily, which catalyzes in vivo the reversible conversion of l ‐serine and tetrahydropteroylglutamate (H4PteGlu) to glycine and 5,10‐methylenetetrahydropteroylglutamate (5,10‐CH2‐H4PteGlu). The SHMT from the psychrophilic bacterium Psychromonas ingrahamii (piSHMT) had been recently purified and characterized. This enzyme was shown to display catalytic and stability properties typical of psychrophilic enzymes, namely high catalytic activity at low temperature and thermolability. To gain deeper insights into the structure–function relationship of piSHMT, the three‐dimensional structure of its apo form was determined by X‐ray crystallography. Homology modeling techniques were applied to build a model of the piSHMT holo form. Comparison of the two forms unraveled the conformation modifications that take place when the apo enzyme binds its cofactor. Our results show that the apo form is in an “open” conformation and possesses four (or five, in chain A) disordered loops whose electron density is not visible by X‐ray crystallography. These loops contain residues that interact with the PLP cofactor and three of them are localized in the major domain that, along with the small domain, constitutes the single subunit of the SHMT homodimer. Cofactor binding triggers a rearrangement of the small domain that moves toward the large domain and screens the PLP binding site at the solvent side. Comparison to the mesophilic apo SHMT from Salmonella typhimurium suggests that the backbone conformational changes are wider in psychrophilic SHMT. Proteins 2014; 82:2831–2841. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号