首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT

Lysosomal damage activates AMPK, a regulator of macroautophagy/autophagy and metabolism, and elicits a strong ubiquitination response. Here we show that the cytosolic lectin LGALS9 detects lysosomal membrane breach by binding to lumenal glycoepitopes, and directs both the ubiquitination response and AMPK activation. Proteomic analyses have revealed increased LGALS9 association with lysosomes, and concomitant changes in LGALS9 interactions with its newly identified partners that control ubiquitination-deubiquitination processes. An LGALS9-inetractor, deubiquitinase USP9X, dissociates from damaged lysosomes upon recognition of lumenal glycans by LGALS9. USP9X’s departure from lysosomes promotes K63 ubiquitination and stimulation of MAP3K7/TAK1, an upstream kinase and activator of AMPK hitherto orphaned for a precise physiological function. Ubiquitin-activated MAP3K7/TAK1 controls AMPK specifically during lysosomal injury, caused by a spectrum of membrane-damaging or -permeabilizing agents, including silica crystals, the intracellular pathogen Mycobacterium tuberculosis, TNFSF10/TRAIL signaling, and the anti-diabetes drugs metformin. The LGALS9-ubiquitin system activating AMPK represents a novel signal transduction system contributing to various physiological outputs that are under the control of AMPK, including autophagy, MTOR, lysosomal maintenance and biogenesis, immunity, defense against microbes, and metabolic reprograming.  相似文献   

3.
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin‐directed AAA‐ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo‐Lysosomal Damage Response. Together, they act downstream of K63‐linked ubiquitination and p62 recruitment, and selectively remove K48‐linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.  相似文献   

4.
《Autophagy》2013,9(2):228-229
Macroautophagy (a.k.a. autophagy) is a cellular process aimed at the recycling of proteins and organelles that is achieved when autophagosomes fuse with lysosomes. Accordingly, lysosomal dysfunctions are often associated with impaired autophagy. We demonstrated that inactivation of the sulfatase modifying factor 1 gene (Sumf1), a gene mutated in Multiple Sulfatase Deficiency (MSD), causes glycosaminoglycans (GAGs) to accumulate in lysosomes, which in turn disrupts autophagy. We utilized a murine model of MSD to study how impairment of this process affects chondrocyte viability and thus skeletal development.  相似文献   

5.
Autophagy is a multistep membrane traffic pathway. In contrast to autophagosome formation, the mechanisms underlying autophagosome–lysosome fusion remain largely unknown. Here, we describe a novel autophagy regulator, inositol polyphosphate‐5‐phosphatase E (INPP5E), involved in autophagosome–lysosome fusion process. In neuronal cells, INPP5E knockdown strongly inhibited autophagy by impairing the fusion step. A fraction of INPP5E is localized to lysosomes, and its membrane anchoring and enzymatic activity are necessary for autophagy. INPP5E decreases lysosomal phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), one of the substrates of the phosphatase, that counteracts cortactin‐mediated actin filament stabilization on lysosomes. Lysosomes require actin filaments on their surface for fusing with autophagosomes. INPP5E is one of the genes responsible for Joubert syndrome, a rare brain abnormality, and mutations found in patients with this disease caused defects in autophagy. Taken together, our data reveal a novel role of phosphoinositide on lysosomes and an association between autophagy and neuronal disease.  相似文献   

6.
Macroautophagy (autophagy) is a multistep intracellular degradation system. Autophagosomes form, mature, and ultimately fuse with lysosomes, where their sequestered cargo molecules are digested. In contrast to autophagosome formation, our knowledge of autophagosome-lysosome fusion is limited. In a recent study, we identified a novel regulator of autophagy, INPP5E (inositol polyphosphate-5-phosphatase E), which is essential for autophagosome-lysosome fusion. INPP5E primarily functions in neuronal cells, and knockdown of the corresponding gene causes accumulation of autophagosomes by impairing fusion with lysosomes. Some INPP5E molecules localize at the lysosome, and both lysosomal localization and INPP5E enzymatic activity are crucial for autophagy. In addition, INPP5E decreases PtdIns(3,5)P2 levels on lysosomes, leading to activation of CTTN (cortactin) and stabilization of actin filaments, which are also essential for autophagosome-lysosome fusion. Mutations in INPP5E are causative for Joubert syndrome, a rare brain abnormality, and our results indicate that defects in autophagy play a critical role in pathogenesis.  相似文献   

7.
Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradation. Autophagy is involved in the pathophysiology of numerous diseases and its modulation is beneficial for the outcome of numerous specific diseases. Several lysosomal inhibitors such as bafilomycin A1 (BafA1), protease inhibitors and chloroquine (CQ), have been used interchangeably to block autophagy in in vitro experiments assuming that they all primarily block lysosomal degradation. Among them, only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs and are thus currently the principal compounds used in clinical trials aimed to treat tumors through autophagy inhibition. However, the precise mechanism of how CQ blocks autophagy remains to be firmly demonstrated. In this study, we focus on how CQ inhibits autophagy and directly compare its effects to those of BafA1. We show that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endo-lysosomal systems, which might contribute to the fusion impairment. Strikingly, HCQ-treated mice also show a Golgi disorganization in kidney and intestinal tissues. Altogether, our data reveal that CQ and HCQ are not bona fide surrogates for other types of late stage lysosomal inhibitors for in vivo experiments. Moreover, the multiple cellular alterations caused by CQ and HCQ call for caution when interpreting results obtained by blocking autophagy with this drug.  相似文献   

8.
脑卒中是由脑血管阻塞或出血引发的急性脑血管病,约84%的临床脑卒中患者由脑缺血引起。研究表明,自噬广泛参与并显著影响脑卒中病理生理进程。自噬是一个将陈旧蛋白质、损伤细胞器及多余胞质组分等呈递给溶酶体进行降解的代谢过程,其包括自噬的激活、自噬体的形成和成熟、自噬体与溶酶体融合、自噬产物在自噬溶酶体内消化和降解等过程。自噬流通常被定义为自噬/溶酶体信号机制。最近发现,自噬流障碍是导致缺血性脑卒中后神经元损伤的重要原因,而在自噬过程中任一步骤发生障碍均可导致自噬流损伤。本文重点对自噬体-溶酶体融合的机制,以及该机制在缺血性脑卒中后发生障碍的致病机理进行详细阐述,以期基于自噬体-溶酶体融合机制对神经元自噬流进行调节,进而诱导缺血性脑卒中后的神经保护。本文可为脑卒中病理机制研究指明方向,为脑卒中治疗探寻新的线索。  相似文献   

9.
Retromer is an endosomal multi‐protein complex that organizes the endocytic recycling of a vast range of integral membrane proteins. Here, we establish an additional retromer function in controlling the activity and localization of the late endosomal small GTPase RAB7. Surprisingly, we found that RAB7 not only decorates late endosomes or lysosomes, but is also present on the endoplasmic reticulum, trans‐Golgi network, and mitochondrial membranes, a localization that is maintained by retromer and the retromer‐associated RAB7‐specific GAP TBC1D5. In the absence of either TBC1D5 or retromer, RAB7 activity state and localization are no longer controlled and hyperactivated RAB7 expands over the entire lysosomal domain. This lysosomal accumulation of hyperactivated RAB7 results in a striking loss of RAB7 mobility and overall depletion of the inactive RAB7 pool on endomembranes. Functionally, we establish that this control of RAB7 activity is not required for the recycling of retromer‐dependent cargoes, but instead enables the correct sorting of the autophagy related transmembrane protein ATG9a and autophagosome formation around damaged mitochondria during Parkin‐mediated mitophagy.  相似文献   

10.
Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome‐related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7‐interacting lysosomal protein) and FYCO1 (coiled‐coil domain‐containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS‐treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population.  相似文献   

11.
Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.  相似文献   

12.
Lysosomes, a central regulator of autophagy, play a critical role in tumour growth. Lysosomal protease cathepsin D can initiate apoptosis when released from lysosomes into the cytosol. In this study, we observed that Musca domestica cecropin (Mdc) 1–8 (M1-8), a small anti-tumour peptide derived from Mdc, inhibits hepatoma cell growth by blocking autophagy–lysosome fusion. This effect is likely achieved by targeting lysosomes to activate lysosomal protease D. Additionally, we examined whether lysosomal content and cathepsin D release were involved in M1-8-induced apoptosis. After exposure to M1-8, human hepatoma HepG2 cells rapidly co-localized with lysosomes, disrupted lysosomal integrity, caused leakage of lysosomal protease cathepsin D, caspase activation and mitochondrial membrane potential changes; and promoted cell apoptosis. Interestingly, in M1-8-treated HepG2 cells, autophagic protein content increased and the lysosome–autophagosome fusion was inhibited, suggesting that M1-8 can cause apoptosis through autophagy and lysosomes. This result indicates that a small accumulation of autophagy and autolysosome inhibition in cells can cause cell death. Taken together, these data suggest a novel insight into the regulatory mechanisms of M1-8 in autophagy and lysosomes, which may facilitate the development of M1-8 as a potential cancer therapeutic agent.  相似文献   

13.
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∼4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∼50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place.  相似文献   

14.
Rui Jia  Carlos M. Guardia  Jing Pu  Yu Chen 《Autophagy》2017,13(10):1648-1663
Whereas the mechanisms involved in autophagosome formation have been extensively studied for the past 2 decades, those responsible for autophagosome-lysosome fusion have only recently begun to garner attention. In this study, we report that the multisubunit BORC complex, previously implicated in kinesin-dependent movement of lysosomes toward the cell periphery, is required for efficient autophagosome-lysosome fusion. Knockout (KO) of BORC subunits causes not only juxtanuclear clustering of lysosomes, but also increased levels of the autophagy protein LC3B-II and the receptor SQSTM1. Increases in LC3B-II occur without changes in basal MTORC1 activity and autophagy initiation. Instead, LC3B-II accumulation largely results from decreased lysosomal degradation. Further experiments show that BORC KO impairs both the encounter and fusion of autophagosomes with lysosomes. Reduced encounters result from an inability of lysosomes to move toward the peripheral cytoplasm, where many autophagosomes are formed. However, BORC KO also reduces the recruitment of the HOPS tethering complex to lysosomes and assembly of the STX17-VAMP8-SNAP29 trans-SNARE complex involved in autophagosome-lysosome fusion. Through these dual roles, BORC integrates the kinesin-dependent movement of lysosomes toward autophagosomes with HOPS-dependent autophagosome-lysosome fusion. These findings reveal a requirement for lysosome dispersal in autophagy that is independent of changes in MTORC1 signaling, and identify BORC as a novel regulator of autophagosome-lysosome fusion.  相似文献   

15.
16.
Autophagy is a cellular process that executes the turnover of dysfunctional organelles and misfolded or abnormally aggregated proteins. Microtubule‐associated protein MAP1S interacts with autophagy marker LC3 and positively regulates autophagy flux. LC3 binds with fibronectinmRNA and facilitates its translation. The synthesized fibronectin protein is exported to cell surface to initiate the assembly of fibronectin extracellular matrix. Fibronectin is degraded in lysosomes after it is engulfed into cytosol via endocytosis. Here, we show that defects in MAP1S‐mediated autophagy trigger oxidative stress, sinusoidal dilation, and lifespan reduction. Overexpression of LC3 in wild‐type mice increases the levels of fibronectin and γ‐H2AX, a marker of DNA double‐strand breakage. LC3‐induced fibronectin is efficiently degraded in lysosomes to maintain a balance of fibronectin levels in wild‐type mice so that the mice live a normal term of lifespan. In the LC3 transgenic mice with MAP1S deleted, LC3 enhances the synthesis of fibronectin but the MAP1S depletion causes an impairment of the lysosomal degradation of fibronectin. The accumulation of fibronectin protein promotes liver fibrosis, induces an accumulation of cell population at the G0/G1 stage, and further intensifies oxidative stress and sinusoidal dilatation. The LC3‐induced overexpression of fibronectin imposes stresses on MAP1S‐deficient mice and dramatically reduces their lifespans. Therefore, MAP1S‐mediated autophagy plays an important role in maintaining mouse lifespan especially in the presence of extra amount of fibronectin.  相似文献   

17.
《Autophagy》2013,9(1):53-58
Macrophages activate autophagy as an immediate response to Legionella pneumophila infection, but what marks the pathogen phagosome as a target for the autophagy machinery is not known. Because a variety of bacteria, parasites, viruses, and toxins that associate with the endoplasmic reticulum enter host cells by a cholesterol-dependent route, we tested the hypothesis that autophagy is triggered when microbes engage components of lipid raft domains. As the intracellular respiratory pathogen L. pneumophila or the extracellular uropathogen FimH+ Escherichia coli entered macrophages by a cholesterol-sensitive mechanism, they immediately resided in vacuoles rich in glycosylphosphatidylinositol moieties and the autophagy enzyme Atg7. As expected for autophagosomes, the vacuoles sequentially acquired the endoplasmic reticulum protein BiP, the autophagy markers Atg8 and monodansyl-cadaverine, and the lysosomal protein LAMP-1. A robust macrophage response to the pathogens was cholesterol-dependent, since fewer Atg7-rich vacuoles were observed when macrophages were pre-treated with methyl-beta-cyclodextrin or filipin. A model in which macrophages exploit autophagy to capture pathogens within the lipid raft pathway for antigen presentation prior to disposal in lysosomes is discussed.  相似文献   

18.
Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ?50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.  相似文献   

19.
《Autophagy》2013,9(8):1267-1268
Autophagy is a catabolic process through which damaged organelles and protein aggregates are delivered to lysosomes for degradation. Autophagy genes are reported to promote exposure of “eat me” signals on the surface of apoptotic cells, but whether they function in engulfing cells is not clear. Recently, we found that the autophagy mutants atg-18 and epg-5 are defective in removing apoptotic cells derived from the C. elegans Q neuroblast, a phenotype that can be fully rescued by expression of ATG-18 and EPG-5 in the engulfing cell. Loss of ATG-18 or EPG-5 does not affect cell corpse engulfment but causes defects in phagosomal recruitment of RAB-5 and RAB-7 and formation of phagolysosomes. EPG-5, ATG-18 and LGG-1 are sequentially recruited to phagosomes, suggesting that they function at different steps of phagosomal maturation. Our studies indicate that autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell.  相似文献   

20.
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alpha-glucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.Key words: Pompe disease, lysosomal glycogen storage, myopathy, Atg7, enzyme replacement therapy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号