首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleic acid-based aptamers are widely accepted as promising tools for development of a plethora of diagnostic and therapeutic preparations, as well as means ofenvironmental monitoring. Aptamers can be regarded as fully synthetic analogs of antibodies. At the same time, certain properties ofaptamers render them superior to antibodies in terms of development of new diagnostic and monitoring systems that combine high sensitivity and specificity with high reproducibility and inexpensive manufacturing. In particular, the aptamers tailored to bind biomolecules and live cells can be employed in solving the problem of combining short analysis time with high sensitivity and specificity in detection of pathogenic bacteria. The present review summarizes the current state of the techniques developed for aptamer-based detection of bacteria and their components and discusses the potential of their practical application.  相似文献   

2.
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.  相似文献   

3.
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets (“apatopes”) with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer–aptamer, aptamer–nonaptamer biomacromolecules (siRNAs, proteins) and aptamer–nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.  相似文献   

4.
Aptamers are short nucleic acids or peptides that strongly bind to a protein of interest and functionally inhibit a given target protein at the intracellular level. Besides high affinity and specificity, aptamers have several advantages over traditional antibodies. Hence, they have been broadly selected to develop antiviral agents for therapeutic applications against hepatitis B and C viruses (HBV, HCV). This review provides a summary of in vitro selection and characterization of aptamers against viral hepatitis, which is of practical significance in drug discovery.  相似文献   

5.
肿瘤细胞异常的糖基化模式是癌症的标志,在恶性转化和癌症进展中起着至关重要的作用。不同机制导致的肿瘤相关碳水化合物抗原(tumor-associated carbohydrate antigens,TACAs)不仅是临床肿瘤学诊断中公认的生物标志物,也为治疗干预提供了特定的靶点。适配体作为抗体或凝集素的有力替代品,近年来在碳水化合物的识别中展现了潜在的应用价值。本文聚焦于癌症中异常的糖基化改变,综述了目前TACAs识别适配体的开发进展。依据适配体筛选程序中的靶标来源,阐述了针对3种类型靶标,包括糖类分子、蛋白质聚糖表位,以及血清糖类抗原的筛选策略。从筛选方法、性能指标及相关应用性方面对适配体进行了总结,并讨论了当前研究中存在的问题和未来发展方向。  相似文献   

6.
Li N  Nguyen HH  Byrom M  Ellington AD 《PloS one》2011,6(6):e20299
Aptamers continue to receive interest as potential therapeutic agents for the treatment of diseases, including cancer. In order to determine whether aptamers might eventually prove to be as useful as other clinical biopolymers, such as antibodies, we selected aptamers against an important clinical target, human epidermal growth factor receptor (hEGFR). The initial selection yielded only a single clone that could bind to hEGFR, but further mutation and optimization yielded a family of tight-binding aptamers. One of the selected aptamers, E07, bound tightly to the wild-type receptor (Kd = 2.4 nM). This aptamer can compete with EGF for binding, binds to a novel epitope on EGFR, and also binds a deletion mutant, EGFRvIII, that is commonly found in breast and lung cancers, and especially in grade IV glioblastoma multiforme, a cancer which has for the most part proved unresponsive to current therapies. The aptamer binds to cells expressing EGFR, blocks receptor autophosphorylation, and prevents proliferation of tumor cells in three-dimensional matrices. In short, the aptamer is a promising candidate for further development as an anti-tumor therapeutic. In addition, Aptamer E07 is readily internalized into EGFR-expressing cells, raising the possibility that it might be used to escort other anti-tumor or contrast agents.  相似文献   

7.
Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the presence of human serum, making it a potential candidate for both diagnostic and therapeutic use.  相似文献   

8.
Nucleic acid aptamers are regarded as rivals for antibodies and as such are being investigated for their therapeutic potential. In the present work, it is shown that two different high-affinity DNA aptamers developed previously by Ferreira et al. against MUC1 antigen (designated MUC1-5TR-1 and MUC1-S1.3/S2.2) on MCF7 breast cancer cells can be linked to the first component of complement (C1q) via a biotin–streptavidin system and induce significant killing of MCF7 cells in vitro. Cell viability was assessed by Trypan blue uptake and absorbance at 590 nm of stained cells following buffer washes and lysis in 1% SDS. While the killing effect is demonstrable versus various controls, dependent on aptamer dose, and reproducible, it appears to kill maximally about half of treated MCF7 cells. Possible reasons for the marginal killing effect include antigenic shedding in vitro and membrane-bound complement regulatory proteins (mCRPs) on the cell surface such as CD46, CD55, and CD59 which act to inhibit complement-mediated lysis of cells. Future in vitro research could benefit from application of mCRP-specific aptamers in combination with anti-MUC1 aptamers to overcome surface protective mechanisms while attacking the plasma membrane of MCF7 cells or other MUC1-expressing cancer cells. However, in vivo such a combination could have deleterious effects on normal MUC1-expressing cells as well.  相似文献   

9.
Aptamers are chemical antibodies that bind to their targets with high affinity and specificity. These short stretches of nucleic acids are identified using a repetitive in vitro selection and partitioning technology called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since the emergence of this technology, many modifications and variations have been introduced to enable the selection of specific ligands, even for implausible targets. For membrane protein, the selection scheme can be chosen depending upon the availability of the system, the protein characteristics and the application required. Aptamers have been generated for a significant number of disease-associated membrane proteins and have been shown to have considerable diagnostic and therapeutic importance. In this article, we review the SELEX process used for identification of aptamers that target cell-surface proteins and recapitulate their use as therapeutic and diagnostic reagents.  相似文献   

10.
A method of selection of DNA aptamers to breast tumor tissue based on the use of postoperative material has been developed. Breast cancer tissues were used as the positive target; the negative targets included benign tumor tissue, adjacent healthy tissues, breast tissues from mastopathy patients, and also tissues of other types of malignant tumors. During selection a pool of DNA aptamers demonstrating selective binding to breast cancer cells and tissues and insignificant binding to breast benign tissues has been obtained. These DNA aptamers can be used for identification of protein markers, breast cancer diagnostics, and targeted delivery of anticancer drugs.  相似文献   

11.
Analytical applications of aptamers   总被引:17,自引:0,他引:17  
So far, several bio-analytical methods have used nucleic acid probes to detect specific sequences in RNA or DNA targets through hybridisation. More recently, specific nucleic acids, aptamers, selected from random sequence pools, have been shown to bind non-nucleic acid targets, such as small molecules or proteins. The development of in vitro selection and amplification techniques has allowed the identification of specific aptamers, which bind to the target molecules with high affinity. Many small organic molecules with molecular weights from 100 to 10,000 Da have been shown to be good targets for selection. Moreover, aptamers can be selected against difficult target haptens, such as toxins or prions. The selected aptamers can bind to their targets with high affinity and even discriminate between closely related targets.

Aptamers can thus be considered as a valid alternative to antibodies or other bio-mimetic receptors, for the development of biosensors and other analytical methods. The production of aptamers is commonly performed by the SELEX (systematic evolution of ligands by exponential enrichment) process, which, starting from large libraries of oligonucleotides, allows the isolation of large amounts of functional nucleic acids by an iterative process of in vitro selection and subsequent amplification through polymerase chain reaction.

Aptamers are suitable for applications based on molecular recognition as analytical, diagnostic and therapeutic tools. In this review, the main analytical methods, which have been developed using aptamers, will be discussed together with an overview on the aptamer selection process.  相似文献   


12.
适配体(Aptamers)是通过指数富集的配体系统进化(systematic evolution of ligands by exponential enrichment,SELEX)技术,从随机核酸文库中筛选出来的单链寡核苷酸,已在临床医疗及其他领域得到日益广泛的应用.与抗体相比,适配体具有很多优点,如高亲和力、高特异性、分子量小、几乎无免疫排斥反应、结构稳定、易于合成等.可用于适配体筛选的靶标范围非常广,包括有机小分子、蛋白、完整细胞及病毒颗粒等.迅速可靠的病原检测对于病毒性传染病的成功预防和治疗具有重要意义.随着严格筛选和快速分离技术的进步,适配体在病毒感染的检测治疗中显示出巨大的潜力.本文概括介绍了适配体在病毒研究方面的最新应用进展及未来前景.  相似文献   

13.
EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues. Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non-specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy.  相似文献   

14.
Human epidermal growth factor receptor 2 (HER2) expression in breast cancer is associated with an aggressive phenotype and poor prognosis, making it an appealing therapeutic target. Trastuzumab, an HER2 antibody-based inhibitor, is currently the leading targeted treatment for HER2(+)-breast cancers. Unfortunately, many patients inevitably develop resistance to the therapy, highlighting the need for alternative targeted therapeutic options. In this study, we used a novel, cell-based selection approach for isolating 'cell-type specific', 'cell-internalizing RNA ligands (aptamers)' capable of delivering therapeutic small interfering RNAs (siRNAs) to HER2-expressing breast cancer cells. RNA aptamers with the greatest specificity and internalization potential were covalently linked to siRNAs targeting the anti-apoptotic gene, Bcl-2. We demonstrate that, when applied to cells, the HER2 aptamer-Bcl-2 siRNA conjugates selectively internalize into HER2(+)-cells and silence Bcl-2 gene expression. Importantly, Bcl-2 silencing sensitizes these cells to chemotherapy (cisplatin) suggesting a potential new therapeutic approach for treating breast cancers with HER2(+)-status. In summary, we describe a novel cell-based selection methodology that enables the identification of cell-internalizing RNA aptamers for targeting therapeutic siRNAs to HER2-expressing breast cancer cells. The future refinement of this technology may promote the widespread use of RNA-based reagents for targeted therapeutic applications.  相似文献   

15.
Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

16.
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.  相似文献   

17.
18.
Aptamers are nucleic acid oligomers with distinct conformational shapes that allow them to bind targets with high affinity and specificity. Aptamers are selected from a random oligonucleotide library by their capability to bind a certain molecular target. A variety of targets ranging from small molecules like amino acids to complex targets and whole cells have been used to select aptamers. These characteristics and the ability to create specific aptamers against virtually any cell type in a process termed “systematic evolution by exponential enrichment” make them interesting tools for flow cytometry. In this contribution, we review the application of aptamers as probes for flow cytometry, especially cell-phenotyping and detection of various cancer cell lines and virus-infected cells and pathogens. We also discuss the potential of aptamers combined with nanoparticles such as quantum dots for the generation of new multivalent detector molecules with enhanced affinity and sensitivity. With regard to recent advancements in aptamer selection and the decreasing costs for oligonucleotide synthesis, aptamers may rise as potent competitors for antibodies as molecular probes in flow cytometry.  相似文献   

19.
Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.  相似文献   

20.
Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in a large percentage of breast cancers. Monoclonal antibodies targeting HER2 are vastly used for both diagnostic and therapeutic aims. However, identifying a new molecular probe against HER2 with improved diagnostic and therapeutic features is of great importance. In this report, we have applied the cell systematic evolution of ligands by exponential enrichment (SELEX) strategy for 16 selection rounds to generate an enriched pool of aptamers that specifically recognize the HER2 positive cell line. During the Cell SELEX procedure, a human HER2-overexpressing breast cancer cell line and a human HER2 negative breast cancer cell line were used. Our results reveal that polymerase chain reaction (PCR) amplification of random DNA libraries and the selected single-stranded DNA pool in different Cell SELEX rounds are different from what we expect from PCR amplification of homologous DNA. Our results also confirmed previous studies describing positive HER2 status of SK-BR3 and the absence of the HER2 expression in the MDA-MB468. We also developed a new method, Cell enzyme-linked assay, to monitor the enrichment of aptamers in a given round of Cell SELEX. This method would also be useful in other experiments using live cell enzyme-linked immunosorbent assay on adherent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号