首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tan NS  Ho B  Ding JL 《Protein engineering》2002,15(4):337-345
Protein secretion is conferred by a hydrophobic secretion signal usually located at the N-terminal of the polypeptide. We report here, the identification of a novel secretion signal (SS) that is capable of directing the secretion of recombinant proteins from both prokaryotes and eukaryotes. Secretion of fusion reporter proteins was demonstrated in Escherichia coli, Saccharomyces cerevisiae and six different eukaryotic cells. Estrogen-inducibility and secretion of fusion reporter protein was demonstrated in six common eukaryotic cell lines. The rate of protein secretion is rapid and its expression profile closely reflects its intracellular concentration of mRNA. In bacteria and yeast, protein secretion directed by SS is dependent on the growth culture condition and rate of induction. This secretion signal allows a flexible strategy for the production and secretion of recombinant proteins in numerous hosts, and to conveniently and rapidly study protein expression.  相似文献   

2.
The Tn5-based transposon Tn5-KIL3 (Miksch et al. 1997c) bearing the kil gene of the ColE1 plasmid of Escherichia coli, which mediates controlled export of periplasmic proteins into the culture medium, was stably integrated into the chromosome of Klebsiella planticola with high transposition frequency. A Bacillus hybrid β-glucanase located on an RSF1010-derived plasmid was mobilized from E.coli to K. planticola and used as a reporter protein to select strains with high expression and secretion competence. During fermentation experiments it was shown that the production of β-glucanase in K. planticola was improved to an unexpectedly high level when the enzyme was secreted into the medium. Due to the stationary-phase promoter used for the expression of the kil gene the secretion of β-glucanase into the medium started at the transition from the exponential to the stationary phase, as in E. coli, and the fraction of secreted protein reached 90%. The results showed that K. planticola may represent an interesting organism for the production of heterologous proteins. Received: 22 July 1998 / Received revision: 25 November 1998 / Accepted: 29 November 1998  相似文献   

3.
4.
In this work, it was discovered that the stability of mRNA in a cell-free extract could be controlled by using engineered T7 terminator sequences. Specifically, it was found that mRNA stability gradually decreased as the length of the stem structure of the T7 terminator was reduced sequentially. As a result of the controlled abundance of mRNA species, it was possible to manipulate the relative expression level of target proteins by employing the T7 terminator of adjusted stem lengths.  相似文献   

5.
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.  相似文献   

6.
Proper protein folding is key to producing recombinant proteins for structure determination. We have examined the effect of misfolded recombinant protein on gene expression in Escherichia coli. Comparison of expression patterns indicates a unique set of genes responding to translational misfolding. The response is in part analogous to heat shock and suggests a translational component to the regulation. We have further utilized the expression information to generate reporters responsive to protein misfolding. These reporters were used to identify properly folded recombinant proteins and to create soluble domains of insoluble proteins for structural studies.  相似文献   

7.
8.
酵母由于其本身的一些优良特性和容易操作性,可以高水平表达重组蛋白,近年来已经有多个酵母表达的蛋白质多肽类药物上市。作为宿主的酵母最常用的是毕赤氏酵母和酿酒酵母。本文对酵母的一般特性、酵母表达操作、密码子、载体和表达策略、两种不同酵母表达系统的特点等进行了论述,供研究者进行酵母高效表达体系的选择与操作参考。  相似文献   

9.
目的构建艰难梭菌(Clostridium difficile,C.difficile)毒素A羧基末端原核表达载体,优化诱导表达条件及纯化重组蛋白。方法利用聚合酶链式反应扩增C.difficile毒素A羧基末端基因序列,并将此序列转入pET-28b载体,构建pET-28b-tcdA重组表达载体,并将表达载体转化到BL21(DE3)感受态大肠埃希菌细胞中,分别在不同条件下进行诱导表达,获得最佳诱导表达条件后进行大量表达,最后用Ni柱对重组蛋白进行亲和纯化,得到纯化后的重组蛋白。结果成功构建了pET-28b-tcdA重组表达载体,其重组蛋白表达最佳诱导条件:菌液吸光度值取0.6、温度取25℃、IPTG终浓度取1.0mmol/L、诱导时间取10h。蛋白纯化咪唑磷酸盐洗脱液最佳浓度取200mmol/L。结论成功构建pET-28b-tcdA重组表达载体,在大肠埃希菌BL21(DE3)中可以有效表达,并获得高浓度重组蛋白,为进一步制备TcdA适配子奠定了一定实验室基础。  相似文献   

10.
目的构建幽门螺杆菌(H.pylori)vacA毒性片段与霍乱毒素B亚单位(ctxB)基因的原核表达载体,并诱导表达VCTB重组蛋白,为制备防治H.pylori感染的口服疫苗奠定基础。方法以H.pylori基因组DNA为模板,PCR扩增vacA毒性片段基因,克隆至质粒pQE30中,获得重组质粒pQE30-vacA。再以pET32(a) -ctxB质粒为模板PCR扩增ctxB目的基因并插入pQE30-vacA中,构建含双基因的表达质粒pQE-vctB。克隆至大肠埃希菌Top10,并在DH5α中诱导表达。SDS-PAGE分析表达结果,Ni-NTA柱纯化后Western blot鉴定其抗原性,免疫家兔后ELISA法检测血清中VacA和CtxB抗体鉴定其免疫原性。结果vacA的DNA片段为723 bp左右。ctxB基因的DNA片段为372 bp左右,与预计长度相符合。测序结果vctB融合基因由1092 bp组成,编码364个氨基酸残基的多肽,与基因文库相符。表达蛋白VCTB经SDS-PAGE分析,相对分子量为40 000,与预期的一致;表达量约占菌体总蛋白的20%,提纯后SDS-PAGE分析可见单一条带,纯度可达92%以上。Western blot鉴定能与抗VacA人血清发生特异性反应,ELISA测定能与抗ctxB兔血清发生特异性反应。结论含vctA和ctxB融合基因的表达载体构建成功,并在大肠埃希菌DH5α中表达了重组蛋白质VCTB,表达蛋白具有良好的抗原性和免疫原性,可用于制备口服疫苗。  相似文献   

11.
The human zona pellucida (ZP) is composed of three major glycoproteins: ZP1, ZP2, and ZP3. The aim of this study was to clarify the role of ZP2 by focusing on the polypeptide structure. We produced in Escherichia coli a recombinant human ZP2 protein (rec-hZP2) corresponding to amino acid sequence 1-206 of the mature protein. The final yield of rec-hZP2 protein was 80 microg/ml Luria Broth medium. After 2-h incubation of human spermatozoa with rec-hZP2 in vitro, an immunofluorescent study indicated that rec-hZP2 bound only to acrosome-reacted spermatozoa. The binding site migrated from the acrosome to the midpiece of the spermatozoa. Rabbit and mouse antisera produced against rec-hZP2 stained native human ZP in the immunofluorescent study, and significantly blocked human sperm binding and penetration into human ZP as compared to control values. The N-terminal polypeptide portion of human ZP2 was shown to contain a binding site for acrosome-reacted spermatozoa and to play an important role in secondary sperm binding and penetration into the ZP.  相似文献   

12.
The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins is initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro-region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57–70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future.  相似文献   

13.
Serber Z  Ferrell JE 《Cell》2007,128(3):441-444
Cyclin-dependent kinase activation can prevent yeast cells from responding to mating pheromone. Strickfaden et al. (2007) now show that this block arises from the multisite phosphorylation of Ste5. This provides a beautiful example of how phosphorylation can produce decisive changes in protein function through bulk electrostatics, without the necessity of intricate conformational changes.  相似文献   

14.
Previous work has shown that a human-antibody-producing recombinant CHO cell line did not increase its intracellular content of protein disulfide isomerase (PDI) and heavy chain binding protein (BIP) according to the increasing expression of antibody. It was also found that the intracellular assembly of light and heavy chain is a major limiting factor for overall cell specific productivity, as secretion rates improve with higher light chain expression levels and heavy chain accumulates intracellularly when too little light chain is present. As these CHO cells had a significantly lower intracellular PDI content compared to that of hybridoma cells, these results have led us to try to overcome the limitation in the posttranslational assembly in the endoplasmatic reticulum. Recombinant CHO cells were transfected with PDI or BIP alone or in combination, and the effect on intracellular light and heavy chain content and specific production rate was determined. Overexpression of BIP, both alone and in combination with PDI, reduced the specific secretion rate, whereas PDI, when overexpressed alone, caused an increase of product secretion rate.  相似文献   

15.
Proteins are the main reagents for structural, biomedical, and biotechnological studies; however, some important challenges remain concerning protein solubility and stability. Numerous strategies have been developed, with some success, to mitigate these challenges, but a universal strategy is still elusive. Currently, researchers face a plethora of alternatives for the expression of the target protein, which generates a great diversity of conditions to be evaluated. Among these, different promoter strength, diverse expression host and constructs, or special culture conditions have an important role in protein solubility. With the arrival of automated high-throughput screening (HTS) systems, the evaluation of hundreds of different conditions within reasonable cost and time limits is possible. This technology increases the chances to obtain the target protein in a pure, soluble, and stable state. This review focuses on some of the most commonly used strategies for the expression of recombinant proteins in the enterobacterium Escherichia coli, including the use of HTS for the production of soluble proteins.  相似文献   

16.
The expression of murine endostatin was achieved by placing its gene downstream of an alkaline phosphatase gene (phoA) promoter. To ensure proper folding and secretion of the recombinant protein, the mouse endostatin was fused with alkaline phosphatase signal peptide. SDS/polyacrylamide gel electrophoresis analysis of the culture medium of recombinant Escherichia coli cells revealed that endostatin was efficiently secreted. The signal peptide was efficiently cleaved during secretion as demonstrated by N-terminal amino acid sequencing. The maximum yield of secreted endostatin during fermentation was 40 mg/liter. Up to 28 mg of endostatin was purified from 1 liter of cell culture broth. The biological activity of recombinant protein was tested in a bovine aortic endothelial (BAE) cell proliferation assay. The recombinant endostatin inhibited the growth of BAE cells stimulated by basic fibroblast growth factor, and its ED50 was comparable to that from a previous report. Flow cytometric measurements of BAE cells cultivated in medium with endostatin demonstrated a cell cycle arrest mainly in the G0/G1 phase and a decrease in the S phase.  相似文献   

17.
Effect of PDI overexpression on recombinant protein secretion in CHO cells   总被引:2,自引:0,他引:2  
In eukaryotic cells, protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. Increasing PDI activity in bacterial, yeast, and insect cell expression systems can lead to increased secretion of heterologous proteins containing disulfide bridges. Since Chinese hamster ovary (CHO) cells are widely used for the expression of recombinant proteins, we expressed recombinant human PDI (rhu PDI) in CHO cells to increase cellular PDI levels and examined its effect on the secretion of two different recombinant proteins: interleukin 15 (IL-15) and a tumor necrosis factor receptor:Fc fusion protein (TNFR:Fc). Secretion of TNFR:Fc (a disulfide-rich protein) is decreased in cells overexpressing PDI; the TNFR:Fc protein is retained inside these cells and colocalizes with the overexpressed rhu PDI protein in the endoplasmic reticulum. PDI overexpression did not result in intracellular retention of IL15. The nature of the interaction between PDI and TNFR:Fc was further investigated by expressing a disulfide isomerase mutant PDI in CHO cells to determine if the functional activity of PDI is involved in the cellular retention of TNFR:Fc protein.  相似文献   

18.
High-level transient expression of recombinant protein in lettuce   总被引:3,自引:0,他引:3  
Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations < or = 100 ppm in the vacuum infiltration did not affect GUS expression, while infiltration with an A. tumefaciens density of 10(7) and 10(8) colony forming units/mL, incubation at 29 degrees C, and a surfactant concentration of 1,000 ppm significantly reduced expression. Incubation in continuous light caused lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta.  相似文献   

19.
Semliki Forest virus vectors (SFV) have been developed for efficient transgene expression to result in high receptor yields(50–200 pmol receptor/mg protein) in a variety of mammalian host cells. Transfer of the SFV technology to mammalian cells growing in suspension cultures has made it feasible to produce hundreds of milligrams of receptor proteins in a short time. Large-scale production, however, raises the questions of the safety of handling virally infected cells for down-stream processing. Analysis of cell culture medium and SFV-infected cells revealed that some infectious particles were still present. Replacement of virus-containing medium at 2 h post-infection efficiently removed the majority of infectious replication-deficient SFV particles. Washes with PBS further reduced the number of infectious particles significantly both in the medium and associated with cells to levels that allowed safe handling of SFV-infected cells outside the cell culture facility for biochemical, pharmacological, or electrophysiological assays or down-stream processes in connection to receptor purification. Furthermore, engineering of novel temperature-sensitive mutant SFV vectors resulted in temperature-controlled transgene expression, which completely eliminates the risk of contaminating laboratory personnel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Escherichia coli—the powerhouse for recombinant protein production—is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号