首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.  相似文献   

3.
4.
5.
Histone deacetylases (HDACs) are enzymes that regulate the functions of histones as well as nonhistones by catalyzing the removal of acetyl groups from lysine residues. HDACs regulate many biological processes, including the cell division cycle and tumorigenesis. Although recent studies have implicated HDAC8 in tumor cell proliferation, the molecular mechanisms linking HDAC8 to cell growth remain unknown. Here, we report that the human ortholog of the yeast ever-shorter telomeres 1B (EST1B) binds HDAC8. This interaction is regulated by protein kinase A-mediated HDAC8 phosphorylation and protects human EST1B (hEST1B) from ubiquitin-mediated degradation. Phosphorylated HDAC8 preferentially recruits Hsp70 to a complex that inhibits the CHIP (C-terminal heat shock protein interacting protein) E3 ligase-mediated degradation of hEST1B. Importantly, HDAC8 regulation of hEST1B protein stability modulates total telomerase enzymatic activity. Our findings reveal a novel mechanism by which HDAC8 contributes to tumorigenesis by regulating telomerase activity.  相似文献   

6.
7.
8.
9.
Analysis of protein complexes provides insights into how the ensemble of expressed proteome is organized into functional units. While there have been advances in techniques for proteome‐wide profiling of cytoplasmic protein complexes, information about human nuclear protein complexes are very limited. To close this gap, we combined native size exclusion chromatography (SEC) with label‐free quantitative MS profiling to characterize hundreds of nuclear protein complexes isolated from human glioblastoma multiforme T98G cells. We identified 1794 proteins that overlapped between two biological replicates of which 1244 proteins were characterized as existing within stably associated putative complexes. co‐IP experiments confirmed the interaction of PARP1 with Ku70/Ku80 proteins and HDAC1 (histone deacetylase complex 1) and CHD4. HDAC1/2 also co‐migrated with various SIN3A and nucleosome remodeling and deacetylase components in SEC fractionation including SIN3A, SAP30, RBBP4, RBBP7, and NCOR1. Co‐elution of HDAC1/2/3 with both the KDM1A and RCOR1 further confirmed that these proteins are integral components of human deacetylase complexes. Our approach also demonstrated the ability to identify potential moonlighting complexes and novel complexes containing uncharacterized proteins. Overall, the results demonstrated the utility of SEC fractionation and LC–MS analysis for system‐wide profiling of proteins to predict the existence of distinct forms of nuclear protein complexes.  相似文献   

10.
11.
12.
Yeast genes of phospholipid biosynthesis are negatively regulated by repressor protein Opi1 when precursor molecules inositol and choline (IC) are available. Opi1-triggered gene repression is mediated by recruitment of the Sin3 corepressor complex. In this study, we systematically investigated the regulatory contribution of subunits of Sin3 complexes and identified Pho23 as important for IC-dependent gene repression. Two non-overlapping regions within Pho23 mediate its direct interaction with Sin3. Previous work has shown that Sin3 recruits the histone deacetylase (HDAC) Rpd3 to execute gene repression. While deletion of SIN3 strongly alleviates gene repression by IC, an rpd3 null mutant shows almost normal regulation. We thus hypothesized that various HDACs may contribute to Sin3-mediated repression of IC-regulated genes. Indeed, a triple mutant lacking HDACs, Rpd3, Hda1 and Hos1, could phenocopy a sin3 single mutant. We show that these proteins are able to contact Sin3 in vitro and in vivo and mapped three distinct HDAC interaction domains, designated HID1, HID2 and HID3. HID3, which is identical to the previously described structural motif PAH4 (paired amphipathic helix), can bind all HDACs tested. Chromatin immunoprecipitation studies finally confirmed that Hda1 and Hos1 are recruited to promoters of phospholipid biosynthetic genes INO1 and CHO2.  相似文献   

13.
14.
Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and alpha-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on acetylation of CFIm25, a component of mammalian cleavage factor Im (CF Im), and poly(A) polymerase (PAP), a polyadenylating enzyme for the pre-mRNA 3'-end. The residues acetylated in these proteins were mapped onto the regions required for interaction with each other. Whereas CBP acetylated these proteins, HDAC1, HDAC3, HDAC10, SIRT1, and SIRT2 were involved in in vivo deacetylation. Acetylation of the CFIm25 occurred depending on the cleavage factor complex formation. Importantly, the interaction between PAP and CF Im complex was decreased by acetylation. We also demonstrated that acetylation of PAP inhibited the nuclear localization of PAP by inhibiting the binding to the importin alpha/beta complex. These results suggest that CBP and HDACs regulate the 3'-end processing machinery and modulate the localization of PAP through the acetylation and deacetylation cycle.  相似文献   

15.
Epithelial‐mesenchymal transition (EMT) and renal fibrosis are closely involved in chronic kidney disease. Inhibition of histone deacetylase (HDAC) has an anti‐fibrotic effect in various diseases. However, the pathophysiological role of isoform‐specific HDACs or class‐selective HDACs in renal fibrosis remains unknown. Here, we investigated EMT markers and extracellular matrix (ECM) proteins in a human proximal tubular cell line (HK‐2) by using HDAC inhibitors or by knockdown of class I HDACs (HDAC1, 2, 3 and 8). Trichostatin A (TSA), MS275, PCI34051 and LMK235 inhibited ECM proteins such as collagen type I or fibronectin in transforming growth factor β1 (TGF‐β1)‐induced HK2 cells. However, restoration of TGF‐β1‐induced E‐cadherin down‐regulation was only seen in HK‐2 cells treated with TSA or MS275, but not with PCI34051, whereas TGF‐β1‐induced N‐cadherin expression was not affected by the inhibitors. ECM protein and EMT marker levels were prevented or restored by small interfering RNA transfection against HDAC8, but not against other class I HDACs (HDAC1, 2 and 3). E‐cadherin regulation is mediated by HDAC8 expression, but not by HDAC8 enzyme activity. Thus, class I HDACs (HDAC1, 2, 3 and 8) play a major role in regulating ECM and EMT, whereas class IIa HDACs (HDAC4 and 5) are less effective.  相似文献   

16.
The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号