首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
TGF‐β1 (transforming growth factor‐β1) plays a central role in regulating proliferation, migration and differentiation of dental pulp cells during the repair process after tooth injury. Our previous study showed that p38 mitogen‐activated protein kinase may act downstream of TGF‐β1 signalling to effect the differentiation of dental pulp cells. However, the molecular mechanisms that trigger and regulate the process remain to be elucidated. TGF‐β1 interacts with signalling pathways such as Wnt/β‐catenin and Rho to induce diverse biological effects. TGF‐β1 activates β‐catenin signalling, increases β‐catenin nuclear translocation and interacts with LEF/TCF to regulate gene expression. Morphologic changes in response to TGF‐β1 are associated with activation of Rho GTPases, but are abrogated by inhibitors of Rho‐associated kinase, a major downstream target of Rho. These results suggest that the Wnt/β‐catenin and Rho pathways may mediate the downstream events of TGF‐β1 signalling.  相似文献   

4.
5.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

6.
Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid‐induced rat epilepsy model to investigate whether Wnt/β‐catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β‐catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up‐regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid‐induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β‐catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β‐catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β‐catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy.  相似文献   

7.
8.
We previously reported pro‐survival effects of Wnt3a and Wnt5a proteins in vascular smooth muscle cells (VSMCs). Wnt5a achieved this through induction of Wnt1‐inducible signalling pathway protein‐1 (WISP‐1) consequent to β‐catenin/CREB‐dependent, TCF‐independent, signalling. However, we found that as atherosclerosis advances, although Wnt5a protein was increased, WISP‐1 was reduced. We hypothesized this disconnect could be due to aging. In this study, we elucidate the mechanism underlying Wnt3a pro‐survival signalling and demonstrate the differential effect of age on Wnt3a‐ and Wnt5a‐mediated survival. We show Wnt3a protein was expressed in human atherosclerotic coronary arteries and co‐located with macrophages and VSMCs. Meanwhile, Wnt3a stimulation of primary mouse VSMCs increased β‐catenin nuclear translocation and TCF, but not CREB, activation. Wnt3a increased mRNA expression of the pro‐survival factor WISP‐2 in a TCF‐dependent manner. Functionally, β‐catenin/TCF inhibition or WISP‐2 neutralization significantly impaired Wnt3a‐mediated VSMC survival. WISP‐2 was upregulated in human atherosclerosis and partly co‐localized with Wnt3a. The pro‐survival action of Wnt3a was effective in VSMCs from young (2 month) and old (18–20 month) mice, whereas Wnt5a‐mediated rescue was impaired with age. Further investigation revealed that although Wnt5a induced β‐catenin nuclear translocation in VSMCs from both ages, CREB phosphorylation and WISP‐1 upregulation did not occur in old VSMCs. Unlike Wnt5a, pro‐survival Wnt3a signalling involves β‐catenin/TCF and WISP‐2. While Wnt3a‐mediated survival was unchanged with age, Wnt5a‐mediated survival was lost due to impaired CREB activation and WISP‐1 regulation. Greater understanding of the effect of age on Wnt signalling may identify targets to promote VSMC survival in elderly patients with atherosclerosis.  相似文献   

9.
10.
Due to an increasing emergence of new and drug‐resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β‐catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β‐catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up‐regulated and 20 miRNAs that down‐regulated the Wnt/β‐catenin signalling pathway. Fifteen miRNAs were validated to up‐regulate and five miRNAs to down‐regulate the pathway. Overexpression of four selected miRNAs (miR‐193b, miR‐548f‐1, miR‐1‐1, and miR‐509‐1) that down‐regulated the Wnt/β‐catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34‐infected HEK293 cells, and progeny virus production. Overexpression of miR‐193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR‐193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that β‐catenin was a target of miR‐193b, and β‐catenin rescued miR‐193b‐mediated suppression of IAV infection. miR‐193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus‐mediated gene transfer of miR‐193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR‐193b represses IAV infection by inhibiting Wnt/β‐catenin signalling.  相似文献   

11.
12.
Vascular calcification (VC) is a pathological process underpinning major cardiovascular conditions and has attracted public attention due to its high morbidity and mortality. Chronic kidney disease (CKD) is a common disease related to VC. Ginsenoside Rb1 (Rb1) has been reported to protect the cardiovascular system against vascular diseases, yet its role in VC and the underlying mechanisms remain unclear. In this study, we established a CKD‐associated VC rat model and a β‐glycerophosphate (β‐GP)‐induced vascular smooth muscle cell (VSMC) calcification model to investigate the effects of Rb1 on VC. Our results demonstrated that Rb1 ameliorated calcium deposition and VSMC osteogenic transdifferentiation both in vivo and in vitro. Rb1 treatment inhibited the Wnt/β‐catenin pathway by activating peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), and confocal microscopy was used to show that Rb1 inhibited β‐catenin nuclear translocation in VSMCs. Furthermore, SKL2001, an agonist of the Wnt/β‐catenin pathway, compromised the vascular protective effect of Rb1. GW9662, a PPAR‐γ antagonist, reversed Rb1's inhibitory effect on β‐catenin. These results indicate that Rb1 exerted anticalcific properties through PPAR‐γ/Wnt/β‐catenin axis, which provides new insights into the potential theraputics of VC.  相似文献   

13.
Ever reports showed that PCNP is associated with human cancers including neuroblastoma and lung cancer. However, the role and underlying molecular mechanism of PCNP in ovarian cancer have not been plenty elucidated. Herein, we first investigated the expression of PCNP in ovarian cancer tissues and cells, the effects of PCNP in ovarian cancer proliferation, apoptosis, migration and invasion, and determined the molecular mechanism of PCNP in ovarian cancer progression. The results indicated that PCNP was significantly overexpressed in human ovarian cancer tissues and cells, and related to poor prognosis in ovarian cancer patients. In addition, we also detected that PCNP promoted ovarian cancer cells growth, migration and invasion, as well as inhibited ovarian cancer cells apoptosis. Mechanistically, PCNP binding to β‐catenin promoted β‐catenin nuclear translocation and further activated Wnt/β‐catenin signalling pathway. Moreover, PCNP regulated the expression of genes involved in EMT and further triggered EMT occurrence. Conclusionally, PCNP may promote ovarian cancer progression through activating Wnt/β‐catenin signalling pathway and EMT, acting as a novel and promising target for treating ovarian cancer.  相似文献   

14.
A key step of Wnt signaling activation is the recruitment of β‐catenin to the Wnt target‐gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for β‐catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3–Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of β‐catenin to Wnt target‐gene promoter and activates the Wnt signaling pathway by protecting the β‐catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5–FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt‐mediated tumor cell proliferation. Therefore, Wnt‐induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.  相似文献   

15.
16.
The Wnt/β‐catenin signalling pathway is activated in pancreatic cancer initiation and progression. Dickkopf‐related protein 3 (DKK3) is a member of the human Dickkopf family and an antagonist of Wnt ligand activity. However, the function of DKK3 in this pathway in pancreatic cancer is rarely known. We examined the expression of DKK3 in six human pancreatic cancer cell lines, 75 pancreatic cancer and 75 adjacent non‐cancerous tissues. Dickkopf‐related protein 3 was frequently silenced and methylation in pancreatic cancer cell lines (3/6). The expression of DKK3 was significantly lower in pancreatic cancer tissues than in adjacent normal pancreas tissues. Further, ectopic expression of DKK3 inhibits nuclear translocation of β‐catenin induced by hypoxia in pancreatic cancer Bxpc‐3 cell. The forced expression of DKK3 markedly suppressed migration and the stem cell‐like phenotype of pancreatic cancer Bxpc‐3 cell in hypoxic conditions through reversing epithelial–mesenchymal transition (EMT). The stable expression of DKK3 sensitizes pancreatic cancer Bxpc‐3 cell to gemcitabine, delays tumour growth and augments gemcitabine therapeutic effect in pancreatic cancer xenotransplantation model. Thus, we conclude from our finding that DKK3 is a tumour suppressor and improved gemcitabine therapeutic effect through inducing apoptosis and regulating β‐catenin/EMT signalling in pancreatic cancer Bxpc‐3 cell.  相似文献   

17.
We show that activation of Wnt/β‐catenin and attenuation of Bmp signals, by combined gain‐ and loss‐of‐function mutations of β‐catenin and Bmpr1a, respectively, results in rapidly growing, aggressive squamous cell carcinomas (SCC) in the salivary glands of mice. Tumours contain transplantable and hyperproliferative tumour propagating cells, which can be enriched by fluorescence activated cell sorting (FACS). Single mutations stimulate stem cells, but tumours are not formed. We show that β‐catenin, CBP and Mll promote self‐renewal and H3K4 tri‐methylation in tumour propagating cells. Blocking β‐catenin–CBP interaction with the small molecule ICG‐001 and small‐interfering RNAs against β‐catenin, CBP or Mll abrogate hyperproliferation and H3K4 tri‐methylation, and induce differentiation of cultured tumour propagating cells into acini‐like structures. ICG‐001 decreases H3K4me3 at promoters of stem cell‐associated genes in vitro and reduces tumour growth in vivo. Remarkably, high Wnt/β‐catenin and low Bmp signalling also characterize human salivary gland SCC and head and neck SCC in general. Our work defines mechanisms by which β‐catenin signals remodel chromatin and control induction and maintenance of tumour propagating cells. Further, it supports new strategies for the therapy of solid tumours.  相似文献   

18.
19.
20.
Our previous work showed that Zbed3 is overexpressed in nonsmall cell lung cancer and that down‐regulation of Zbed3 inhibited β‐catenin expression and cancer cell proliferation and invasiveness. Here, we investigated Zbed3's ability to promote lung cancer cell proliferation and invasion and the involvement of the Axin/TPC/glycogen synthase kinase 3β (Gsk‐3β) complex to the response. Coimmunoprecipitation assays showed that wild‐type Zbed3 bound to Axin but a Zbed3 mutant lacking the Axin binding site did not. In A549 and H1299 lung cancer cells, Zbed3 overexpression promoted cancer cell proliferation and invasiveness, as well as Wnt signalling and expression of downstream mediators, including β‐catenin, cyclin D1 and MMP7 (P < 0.05). In contrast, the Zbed3 mutant failed to enhance β‐catenin expression (P > 0.05), and its ability to promote cancer cell proliferation and invasiveness was much less than wild‐type Zbed3 (P < 0.05). The ability of Zbed3 to increase β‐catenin levels was abolished by Axin knockdown in A549 cells (P > 0.05). Similarly, treating the cells with a GSK‐3β inhibitor abolished Zbed3's ability to increase β‐catenin levels and Wnt signalling. These results indicate that Zbed3 enhances lung cancer cell proliferation and invasiveness at least in part by inhibiting Axin/adenomatous polyposis coli/GSK‐3β‐mediated negative regulation of β‐catenin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号