首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: A key goal of studying biological systems is to design therapeutic intervention strategies. Probabilistic Boolean networks (PBNs) constitute a mathematical model which enables modeling, predicting and intervening in their long-run behavior using Markov chain theory. The long-run dynamics of a PBN, as represented by its steady-state distribution (SSD), can guide the design of effective intervention strategies for the modeled systems. A major obstacle for its application is the large state space of the underlying Markov chain, which poses a serious computational challenge. Hence, it is critical to reduce the model complexity of PBNs for practical applications. RESULTS: We propose a strategy to reduce the state space of the underlying Markov chain of a PBN based on a criterion that the reduction least distorts the proportional change of stationary masses for critical states, for instance, the network attractors. In comparison to previous reduction methods, we reduce the state space directly, without deleting genes. We then derive stationary control policies on the reduced network that can be naturally induced back to the original network. Computational experiments study the effects of the reduction on model complexity and the performance of designed control policies which is measured by the shift of stationary mass away from undesirable states, those associated with undesirable phenotypes. We consider randomly generated networks as well as a 17-gene gastrointestinal cancer network, which, if not reduced, has a 2(17) × 2(17) transition probability matrix. Such a dimension is too large for direct application of many previously proposed PBN intervention strategies.  相似文献   

2.
Boolean networks and, more generally, probabilistic Boolean networks, as one class of gene regulatory networks, model biological processes with the network dynamics determined by the logic-rule regulatory functions in conjunction with probabilistic parameters involved in network transitions. While there has been significant research on applying different control policies to alter network dynamics as future gene therapeutic intervention, we have seen less work on understanding the sensitivity of network dynamics with respect to perturbations to networks, including regulatory rules and the involved parameters, which is particularly critical for the design of intervention strategies. This paper studies this less investigated issue of network sensitivity in the long run. As the underlying model of probabilistic Boolean networks is a finite Markov chain, we define the network sensitivity based on the steady-state distributions of probabilistic Boolean networks and call it long-run sensitivity. The steady-state distribution reflects the long-run behavior of the network and it can give insight into the dynamics or momentum existing in a system. The change of steady-state distribution caused by possible perturbations is the key measure for intervention. This newly defined long-run sensitivity can provide insight on both network inference and intervention. We show the results for probabilistic Boolean networks generated from random Boolean networks and the results from two real biological networks illustrate preliminary applications of sensitivity in intervention for practical problems.  相似文献   

3.
The three-dimensional structure of a protein is a key determinant of its biological function. Given the cost and time required to acquire this structure through experimental means, computational models are necessary to complement wet-lab efforts. Many computational techniques exist for navigating the high-dimensional protein conformational search space, which is explored for low-energy conformations that comprise a protein's native states. This work proposes two strategies to enhance the sampling of conformations near the native state. An enhanced fragment library with greater structural diversity is used to expand the search space in the context of fragment-based assembly. To manage the increased complexity of the search space, only a representative subset of the sampled conformations is retained to further guide the search towards the native state. Our results make the case that these two strategies greatly enhance the sampling of the conformational space near the native state. A detailed comparative analysis shows that our approach performs as well as state-of-the-art ab initio structure prediction protocols.  相似文献   

4.
《Biological Control》2006,36(3):338-347
We address the need to develop improved quantitative procedures for estimating potential non-target impacts of biological control agents in this paper, and propose a probabilistic risk-assessment approach. This approach employs risk-assessment procedures commonly used in many disciplines. The procedure described here uses precision trees to estimate risk based on probabilities that biological control agents will demonstrate predictable behavior under specific conditions, based on their ecological characteristics. We use Trichogramma ostriniae, an egg parasitoid deployed augmentatively against Ostrina nubilalis in the US as case study to conceptually demonstrate the proposed procedure. We propose that this new approach has potential for widespread use in quantifying non-target risk of biological control introductions prior to introductions being made.  相似文献   

5.
We address the need to develop improved quantitative procedures for estimating potential non-target impacts of biological control agents in this paper, and propose a probabilistic risk-assessment approach. This approach employs risk-assessment procedures commonly used in many disciplines. The procedure described here uses precision trees to estimate risk based on probabilities that biological control agents will demonstrate predictable behavior under specific conditions, based on their ecological characteristics. We use Trichogramma ostriniae, an egg parasitoid deployed augmentatively against Ostrina nubilalis in the US as case study to conceptually demonstrate the proposed procedure. We propose that this new approach has potential for widespread use in quantifying non-target risk of biological control introductions prior to introductions being made.  相似文献   

6.

Background

We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual.

Results

We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction.

Conclusion

C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained.  相似文献   

7.
Kochi N  Matache MT 《Bio Systems》2012,108(1-3):14-27
In this paper we provide a mean-field Boolean network model for a signal transduction network of a generic fibroblast cell. The network consists of several main signaling pathways, including the receptor tyrosine kinase, the G-protein coupled receptor, and the Integrin signaling pathway. The network consists of 130 nodes, each representing a signaling molecule (mainly proteins). Nodes are governed by Boolean dynamics including canalizing functions as well as totalistic Boolean functions that depend only on the overall fraction of active nodes. We categorize the Boolean functions into several different classes. Using a mean-field approach we generate a mathematical formula for the probability of a node becoming active at any time step. The model is shown to be a good match for the actual network. This is done by iterating both the actual network and the model and comparing the results numerically. Using the Boolean model it is shown that the system is stable under a variety of parameter combinations. It is also shown that this model is suitable for assessing the dynamics of the network under protein mutations. Analytical results support the numerical observations that in the long-run at most half of the nodes of the network are active.  相似文献   

8.

Background

Developing control policies for zoonotic diseases is challenging, both because of the complex spread dynamics exhibited by these diseases, and because of the need for implementing complex multi-species surveillance and control efforts using limited resources. Mathematical models, and in particular network models, of disease spread are promising as tools for control-policy design, because they can provide comprehensive quantitative representations of disease transmission.

Methodology/Principal Findings

A layered dynamical network model for the transmission and control of zoonotic diseases is introduced as a tool for analyzing disease spread and designing cost-effective surveillance and control. The model development is achieved using brucellosis transmission among wildlife, cattle herds, and human sub-populations in an agricultural system as a case study. Precisely, a model that tracks infection counts in interacting animal herds of multiple species (e.g., cattle herds and groups of wildlife for brucellosis) and in human subpopulations is introduced. The model is then abstracted to a form that permits comprehensive targeted design of multiple control capabilities as well as model identification from data. Next, techniques are developed for such quantitative design of control policies (that are directed to both the animal and human populations), and for model identification from snapshot and time-course data, by drawing on recent results in the network control community.

Conclusions/Significance

The modeling approach is shown to provide quantitative insight into comprehensive control policies for zoonotic diseases, and in turn to permit policy design for mitigation of these diseases. For the brucellosis-transmission example in particular, numerous insights are obtained regarding the optimal distribution of resources among available control capabilities (e.g., vaccination, surveillance and culling, pasteurization of milk) and points in the spread network (e.g., transhumance vs. sedentary herds). In addition, a preliminary identification of the network model for brucellosis is achieved using historical data, and the robustness of the obtained model is demonstrated. As a whole, our results indicate that network modeling can aid in designing control policies for zoonotic diseases.  相似文献   

9.
BACKGROUND: A Boolean network is a simple computational model that may provide insight into the overall behavior of genetic networks and is represented by variables with two possible states (on/off), of the individual nodes/genes of the network. In this study, a Boolean network model has been used to simulate a molecular pathway between two neurotransmitter receptor, dopamine and glutamate receptor, systems in order to understand the consequence of using logic gate rules between nodes, which have two possible states (active and inactive). RESULTS: The dynamical properties of this Boolean network model of the biochemical pathway shows that, the pathway is stable and that, deletion/knockout of certain biologically important nodes cause significant perturbation to this network. The analysis clearly shows that in addition to the expected components dopamine and dopamine receptor 2 (DRD2), Ca(2+) ions play a critical role in maintaining stability of the pathway. CONCLUSION: So this method may be useful for the identification of potential genetic targets, whose loss of function in biochemical pathways may be responsible for disease onset. The molecular pathway considered in this study has been implicated with a complex disorder like schizophrenia, which has a complex multifactorial etiology.  相似文献   

10.
Young Korean women with prominent zygoma may experience stress in daily life because the Oriental physiognomy often associates prominent zygoma with bad luck. Moreover, prominent zygoma in a wide Oriental face has the effect of making a person appear older and stubborn. Zygomatic reduction is often necessary to relieve stress from self-consciousness about facial appearance and to obtain younger and softer features. As such, most zygomatic procedures are cosmetic; therefore, an entirely intraoral approach with no skin incision is desirable. The current operative method of zygomatic reduction consists of two steps. The zygomatic body and arch are exposed through a mucoperiosteal incision from the maxillary canine to the first molar area. The first step is to grind and file the zygomatic body. The second step is made on the zygomatic arch. Using an oscillating saw, a partial-thickness osteotomy is made just posterior to the orbital rim, and a full-thickness osteotomy is made just anterior to the articular tubercle of the zygomatic arch. Light pressure on the posterior part of the arch produces a greenstick fracture of the anterior osteotomy site and a complete fracture of the posterior osteotomy site, resulting in inward repositioning of the zygomatic arch. This method of zygomatic reduction is simple, easy, effective, and leaves no conspicuous scars on the face.  相似文献   

11.

Background

Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle.

Results

Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes.

Conclusions

In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.  相似文献   

12.

Background

Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system.

Results

This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg.

Conclusions

This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.
  相似文献   

13.
In this paper, we propose to use probabilistic neural networks (PNNs) for classification of bacterial growth/no-growth data and modeling the probability of growth. The PNN approach combines both Bayes theorem of conditional probability and Parzen's method for estimating the probability density functions of the random variables. Unlike other neural network training paradigms, PNNs are characterized by high training speed and their ability to produce confidence levels for their classification decision. As a practical application of the proposed approach, PNNs were investigated for their ability in classification of growth/no-growth state of a pathogenic Escherichia coli R31 in response to temperature and water activity. A comparison with the most frequently used traditional statistical method based on logistic regression and multilayer feedforward artificial neural network (MFANN) trained by error backpropagation was also carried out. The PNN-based models were found to outperform linear and nonlinear logistic regression and MFANN in both the classification accuracy and ease by which PNN-based models are developed.  相似文献   

14.
In any control system for which the number of independent controls is smaller than the number of degrees of freedom to be controlled, our choice of control in any state is restricted to a submanifold of smaller dimension than the tangent space. This simple fact has a number of important consequences for questions of biological import; we consider its implications for adaptation, for senescent phenomena and for the determination of tertiary structures of polypeptides through control of certain average properties. We also formulate the Pontryagin Maximum Principle of Optimal control theory in such a way as to inquire whether specific biodynamic systems can be regarded as optimal with respect to rate of accumulation of particular quantities of the system. We find that if this is possible, the quantity in question must play the role of a clock.  相似文献   

15.
The probabilities of the emergence of the two kinds of social structure in a 3-bird flock (chain and cycle) are deduced under the assumption of certain biases acting on the social dynamics of the flock. In particular a bias against the reversal of peck order and a bias against encounters of individuals of disparate social rank are considered. Like-wise a distribution of an “inherent” fighting ability is considered which influences the outcomes of encounters. A functional relation is derived between the importance of this ability and the initial probability of a chain structure.  相似文献   

16.

Background  

Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA) is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB). These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM).  相似文献   

17.
Under certain assumptions concerning the probabilities of “mutations,” i.e. changes of structure of bird societies, it is shown that the probability distribution for all possible structures of a society ofN individuals approaches a limit independent of the initial probability distribution. A formula for the limiting distribution is derived.  相似文献   

18.
The non-transitive character of he peck right relation gives rise to different “social structures” in an aggregate of individuals. A method is developed for computing the respective probabilities of occurrence for each type of structure in small aggregates on the basis of random determination of peck right between each pair of individuals.  相似文献   

19.
MOTIVATION: Probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. The steady-state probability distribution of a PBN gives important information about the captured genetic network. The computation of the steady-state probability distribution usually includes construction of the transition probability matrix and computation of the steady-state probability distribution. The size of the transition probability matrix is 2(n)-by-2(n) where n is the number of genes in the genetic network. Therefore, the computational costs of these two steps are very expensive and it is essential to develop a fast approximation method. RESULTS: In this article, we propose an approximation method for computing the steady-state probability distribution of a PBN based on neglecting some Boolean networks (BNs) with very small probabilities during the construction of the transition probability matrix. An error analysis of this approximation method is given and theoretical result on the distribution of BNs in a PBN with at most two Boolean functions for one gene is also presented. These give a foundation and support for the approximation method. Numerical experiments based on a genetic network are given to demonstrate the efficiency of the proposed method.  相似文献   

20.
We studied the Boolean dynamics of the "quenched" Kauffman models with a directed scale-free network, comparing with that of the original directed random Kauffman networks and that of the directed exponential-fluctuation networks. We have numerically investigated the distributions of the state cycle lengths and its changes as the network size N and the average degree k of nodes increase. In the relatively small network (N approximately 150), the median, the mean value and the standard deviation grow exponentially with N in the directed scale-free and the directed exponential-fluctuation networks with k=2, where the function forms of the distributions are given as an almost exponential. We have found that for the relatively large N approximately 10(3) the growth of the median of the distribution over the attractor lengths asymptotically changes from algebraic type to exponential one as the average degree k goes to k=2. The result supports the existence of the transition at k(c)=2 derived in the annealed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号