共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
microRNA (miRNA)和small interfering RNA(siRNA)在真核生物生命活动的基本过程中发挥着重要的调节作用。随着对siRNA和miRNA研究的不断深入, 最近科学家在研究大鼠雄性精子时发现哺乳动物睾丸内存在另一种新型的小RNA分子, 该分子在精子发生过程中起着重要的生理调节作用, 该种小分子RNA被命名为piRNA, 在功能、分布和分子特征等方面piRNA较miRNA和siRNA存在着显著的不同, 对piRNA深入研究有望揭示出机体内在的基因表达调节机制。 相似文献
3.
piRNAs, a class of small non-coding RNAs associated with PIWI proteins, have broad functions in germline development, transposon silencing, and epigenetic regulation. In diverse organisms, a subset of piRNAs derived from repeat sequences are produced via the interplay between two PIWI proteins. This mechanism, termed “ping-pong” cycle, operates among the PIWI proteins of the primordial mouse testis; however, its involvement in postnatal testes remains elusive. Here we show that adult testicular piRNAs are produced independent of the ping-pong mechanism. We identified and characterized large populations of piRNAs in the adult and postnatal developing testes associated with MILI and MIWI, the only PIWI proteins detectable in these testes. No interaction between MILI and MIWI or sequence feature for the ping-pong mechanism among their piRNAs was detected in the adult testis. The majority of MILI- and MIWI-associated piRNAs originate from the same DNA strands within the same loci. Both populations of piRNAs are biased for 5′ Uracil but not for Adenine on the 10th nucleotide position, and display no complementarity. Furthermore, in Miwi mutants, MILI-associated piRNAs are not downregulated, but instead upregulated. These results indicate that the adult testicular piRNAs are predominantly, if not exclusively, produced by a primary processing mechanism instead of the ping-pong mechanism. In this primary pathway, biogenesis of MILI- and MIWI-associated piRNAs may compete for the same precursors; the types of piRNAs produced tend to be non-selectively dictated by the available precursors in the cell; and precursors with introns tend to be spliced before processed into piRNAs. 相似文献
4.
Daniel Olivieri Martina M Sykora Ravi Sachidanandam Karl Mechtler Julius Brennecke 《The EMBO journal》2010,29(19):3301-3317
In Drosophila, PIWI proteins and bound PIWI‐interacting RNAs (piRNAs) form the core of a small RNA‐mediated defense system against selfish genetic elements. Within germline cells, piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target‐dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi‐mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de‐silencing, to a collapse in piRNA levels and to a failure in Piwi‐nuclear accumulation. We show that Armitage and Yb interact physically and co‐localize in cytoplasmic Yb bodies, which flank P bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb bodies, indicating that Yb bodies are sites of primary piRNA biogenesis. 相似文献
5.
PIWI(P-element-induced wimpy testis)蛋白在动物生殖系细胞中特异性表达,为动物生殖细胞发育分化所必需。piRNA(PIWI-interacting RNAs)是最近在动物生殖系细胞中发现的一类非编码小分子RNA,这类小RNA特异性地与PIWI家族蛋白相互作用。PIWI/piRNA"机器"通过沉默转座元件和调控编码mRNA等方式在动物生殖细胞发育分化过程中发挥重要作用。本文围绕PIWI/piRNA"机器"的生物学功能及分子机制,对近期取得的相关研究进展进行了系统性总结。 相似文献
6.
7.
8.
9.
10.
Nikolas Mathioudakis Andres Palencia Jan Kadlec Adam Round Konstantinos Tripsianes Michael Sattler Ramesh S. Pillai Stephen Cusack 《RNA (New York, N.Y.)》2012,18(11):2056-2072
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs expressed in the germline of animals. They associate with Argonaute proteins of the Piwi subfamily, forming ribonucleoprotein complexes that are involved in maintaining genome integrity. The N-terminal region of some Piwi proteins contains symmetrically dimethylated arginines. This modification is thought to enable recruitment of Tudor domain-containing proteins (TDRDs), which might serve as platforms mediating interactions between various proteins in the piRNA pathway. We measured the binding affinity of the four individual extended Tudor domains (TDs) of murine TDRD1 protein for three different methylarginine-containing peptides from murine Piwi protein MILI. The results show a preference of TD2 and TD3 for consecutive MILI peptides, whereas TD4 and TD1 have, respectively, lower and very weak affinity for any peptide. The affinity of TD1 for methylarginine peptides can be restored by a single-point mutation back to the consensus aromatic cage sequence. These observations were confirmed by pull-down experiments with endogenous Piwi and Piwi-associated proteins. The crystal structure of TD3 bound to a methylated MILI peptide shows an unexpected orientation of the bound peptide, with additional contacts of nonmethylated residues being made outside of the aromatic cage, consistent with solution NMR titration experiments. Finally, the molecular envelope of the four tandem Tudor domains of TDRD1, derived from small angle scattering data, reveals a flexible, elongated shape for the protein. Overall, the results show that TDRD1 can accommodate different peptides from different proteins, and can therefore act as a scaffold protein for complex assembly in the piRNA pathway. 相似文献
11.
12.
piRNA profiling during specific stages of mouse spermatogenesis 总被引:1,自引:0,他引:1
13.
14.
Tang F Hayashi K Kaneda M Lao K Surani MA 《Biochemical and biophysical research communications》2008,369(4):1190-1194
PIWI-interacting RNAs (piRNAs) are a new class of small RNAs specifically expressed in male germ cells. It is known to bind to PIWI class of Argonaute proteins, Mili and Miwi. To help to decipher the mechanism of piRNA function, here, we report a real time PCR-based multiplex assay for piRNA expression. Firstly, we showed that the assay specifically detects piRNA expression in adult testis, consistent with the Northern blot result. The method we developed can simultaneously detect at least eight piRNAs using only 10 pg total RNA, which is equivalent to the RNA present in a single cell. This is five to six order magnitude more sensitive than corresponding Northern blot assays. Finally we used this assay to analyze eight piRNAs expression in mouse primordial germ cells (PGCs) in genital ridges from E12.5, at the time when piRNA-binding protein Mili starts to be detected in PGCs. This multiplex piRNA assay can be further expanded to assay a few hundred of piRNAs simultaneously from as little as total RNA from a single cell. This approach will help to understand the mechanism and function of piRNAs during germ cell development. 相似文献
15.
16.
Watanabe T Chuma S Yamamoto Y Kuramochi-Miyagawa S Totoki Y Toyoda A Hoki Y Fujiyama A Shibata T Sado T Noce T Nakano T Nakatsuji N Lin H Sasaki H 《Developmental cell》2011,20(3):364-375
MITOPLD is a member of the phospholipase D superfamily proteins conserved among diverse species. Zucchini (Zuc), the Drosophila homolog of MITOPLD, has been implicated in primary biogenesis of Piwi-interacting RNAs (piRNAs). By contrast, MITOPLD has been shown to hydrolyze cardiolipin in the outer membrane of mitochondria to generate phosphatidic acid, which is a signaling molecule. To assess whether the mammalian MITOPLD is involved in piRNA biogenesis, we generated Mitopld mutant mice. The mice display meiotic arrest during spermatogenesis, demethylation and derepression of retrotransposons, and defects in primary piRNA biogenesis. Furthermore, in mutant germ cells, mitochondria and the components of the nuage, a perinuclear structure involved in piRNA biogenesis/function, are mislocalized to regions around the centrosome, suggesting that MITOPLD may be involved in microtubule-dependent localization of mitochondria and these proteins. Our results indicate a conserved role for MITOPLD/Zuc in the piRNA pathway and link mitochondrial membrane metabolism/signaling to small RNA biogenesis. 相似文献
17.
18.
Yusuke Shiromoto Satomi Kuramochi-Miyagawa Akito Daiba Shinichiro Chuma Ami Katanaya Akiko Katsumata Ken Nishimura Manami Ohtaka Mahito Nakanishi Toshinobu Nakamura Koichi Yoshinaga Noriko Asada Shota Nakamura Teruo Yasunaga Kanako Kojima-Kita Daisuke Itou Tohru Kimura Toru Nakano 《RNA (New York, N.Y.)》2013,19(6):803-810
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis. 相似文献
19.
MIWI2 targets RNAs transcribed from piRNA‐dependent regions to drive DNA methylation in mouse prospermatogonia 下载免费PDF全文
Argonaute/Piwi proteins can regulate gene expression via RNA degradation and translational regulation using small RNAs as guides. They also promote the establishment of suppressive epigenetic marks on repeat sequences in diverse organisms. In mice, the nuclear Piwi protein MIWI2 and Piwi‐interacting RNAs (piRNAs) are required for DNA methylation of retrotransposon sequences and some other sequences. However, its underlying molecular mechanisms remain unclear. Here, we show that piRNA‐dependent regions are transcribed at the stage when piRNA‐mediated DNA methylation takes place. MIWI2 specifically interacts with RNAs from these regions. In addition, we generated mice with deletion of a retrotransposon sequence either in a representative piRNA‐dependent region or in a piRNA cluster. Both deleted regions were required for the establishment of DNA methylation of the piRNA‐dependent region, indicating that piRNAs determine the target specificity of MIWI2‐mediated DNA methylation. Our results indicate that MIWI2 affects the chromatin state through base‐pairing between piRNAs and nascent RNAs, as observed in other organisms possessing small RNA‐mediated epigenetic regulation. 相似文献
20.
piRNAs(PIWI-interacting RNAs)是一类与PIWI相互作用的小非编码RNAs(small noncoding RNAs, sncRNAs),其长度介于24~32 nt,特异性地在动物生殖腺细胞中表达。近来研究表明piRNA/PIWI系统在动物生殖腺细胞的基因组转座元件沉默及转录后调控mRNAs方面具有重要功能。最近,中国科学院上海生物化学与细胞生物学研究所刘默芳课题组的一项研究表明,在人和小鼠的精子发生过程中,PIWI (鼠源同源蛋白MIWI、人源同源蛋白HIWI)的严格代谢调控至关重要。以此为契机,本文综述了piRNA/PIWI在哺乳动物(主要是小鼠和人)精子发生过程中调控功能的研究进展。 相似文献