首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small spotted dogfish Scyliorhinus canicula and the blackmouth dogfish Galeus melastomus, whose depth distributions overlap in the upper part of the slope (c. 500 m depth), where they have access to the same prey community, have well‐developed eyes and a pure‐rod retina with a single layer of photoreceptors. Interspecific differences in rod outer segment length (LROS) within retinal regions were found. In the periphery and the retinal centre G. melastomus showed a LROS 24 and 30% longer, respectively, than S. canicula and, therefore, a potential for increased sensitivity. In both species longer LROS were always found in correspondence with the retinal centre where the ganglion cell topography formed a horizontal meridian that allowed for better discrimination of the horizon in the visual field. In this area LROS reached 53·4±4·1μm in S. canicula and 77·1±10·5μm in G. melastomus against 46·3±4·2μm and 61·1±10·1μm in the retinal periphery. No significant differences were recorded in LROS and rod density during growth. In both species, a rapid increase of theoretical visual acuity was found to be related to an increase in fish LT and lens size. Visual acuity ranged between 1·7 and 3 cycles degree‐1 in S. canicula and 2·4 and 4·2 in G. melastomus. The G. melastomus rod visual pigment showed the characteristic spectral adaptation to vision in deep‐water (λmax of 481 nm), but was also well placed to detect the bioluminescence of some of its main prey species. In S. canicula the visual pigment absorption (λmax of 496 nm) was more typical of shallow water living fishes. The opsin sequences of the two visual pigments are discussed and key amino acid sites were identified where sequence changes could be responsible for the spectral absorption differences between the two species. The possible relationship between LROS, visual acuity, visual pigment absorption, depth distribution and feeding behaviour are discussed.  相似文献   

2.
Highly localized concentrations of elasmobranch egg capsules of the deep‐water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north‐east Atlantic Ocean. Conductivity–temperature–depth profiling indicated that the eggs were bathed in a specific environmental niche of well‐oxygenated waters between 4·20 and 4·55° C, and salinity 34·95–35·06, on a coarse to fine‐grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef‐building stony coral Solenosmilia variabilis. The depths of both egg‐laying habitats (1489–1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates.  相似文献   

3.
The vertical behaviour of 44 veteran sea trout Salmo trutta (275–580 mm) in different marine fjord habitats (estuary, pelagic, near shore with and without steep cliffs) was documented during May–February by acoustic telemetry. The swimming depth of S. trutta was influenced by habitat, time of day (day v. night), season, seawater temperature and the body length at the time of tagging. Mean swimming depth during May–September was 1·7 m (individual means ranged from 0·4 to 6·4 m). Hence, S. trutta were generally surface oriented, but performed dives down to 24 m. Mean swimming depth in May–September was deeper in the near‐shore habitats with or without steep cliffs (2·0 m and 2·5 m, respectively) than in the pelagic areas (1·2 m). May–September mean swimming depth in all habitats was slightly deeper during day (1·9 m) than at night (1·2 m), confirming that S. trutta conducted small‐scale diel vertical movements. During summer, S. trutta residing in near‐shore habitat progressively moved deeper over the period May (mean 1·1 m) to August (mean 4·0 m) and then reoccupied shallower areas (mean 2·3 m) during September. In winter (November and February), individuals residing in the innermost part of the fjords were found at similar average depths as they occupied during the summer (mean 1·3 m). The swimming depths of S. trutta coincide with the previously known surface orientation of salmon lice Lepeophtheirus salmonis. Combined with previous studies on horizontal use of S. trutta, this study illustrates how S. trutta utilize marine water bodies commonly influenced by anthropogenic factors such as aquaculture, harbours and marine constructions, marine renewable energy production or other human activity. This suggests that the marine behaviour of S. trutta and its susceptibility to coastal anthropogenic factors should be considered in marine planning processes.  相似文献   

4.
An assessment of vertical distribution, diel migration, taxonomic and functional diversity of fishes was carried out at offshore platforms in The (Arabian–Iranian–Persian) Gulf. Video footage was recorded at the Al Shaheen oil field between 2007 and 2014 using a remotely operated vehicle (ROV). A total of 12 822 individual fishes, from 83 taxonomic groups were recorded around the platforms. All the species identified are considered native to The Gulf, although Cyclichthys orbicularis and Lutjanus indicus were recorded for the first time in Qatari waters. Several trends were uncovered in the vertical distribution of the fish community; most species were observed between 20 and 50 m depth and fish abundance decreased towards the bottom, with the highest abundances recorded in the upper layers, i.e. down to 40 m depth. Vertical variation in fish diversity, however, was generally not accompanied by differences in vertical movements. Carnivores and invertivores were the dominant trophic groups, being found at each depth range from surface to seabed. The functional indices showed no significant differences between water depths or diel cycles. The study demonstrates that oil platforms represent a hotspot of fish diversity and interesting sites for studying fish communities, abundance and behaviour.  相似文献   

5.
Changes in the isotopic composition (δ13C and δ15N) in biofilm, macro‐invertebrates and resident salmonids were used to characterize temporal dynamics of marine derived nutrients (MDNs) incorporation between stream reaches with and without MDN inputs. Five Atlantic rivers were chosen to represent contrasting MDN subsidies: four rivers with considerable numbers of anadromous fishes; one river with little MDN input. Rainbow smelt Osmerus mordax, alewife Alosa pseudoharengus, sea lamprey Petromyzon marinus and Atlantic salmon Salmo salar, were the primary anadromous species for the sampled rivers. Regardless of the spatial resolution or the pathway of incorporation, annual nutrient pulses from spawning anadromous fishes had a positive effect on isotopic enrichment at all trophic levels (biofilm, 1·2–5·4‰; macro‐invertebrates, 0·0–6·8‰; fish, 1·2–2·6‰). Community‐wide niche space shifted toward the marine‐nutrient source, but the total ecological niche space did not always increase with MDN inputs. The time‐integrated marine‐nutrient resource contribution to the diet of S. salar parr and brook trout Salvelinus fontinalis ranged between 16·3 and 36·0% during anadromous fish‐spawning periods. The high degree of spatio‐temporal heterogeneity in marine‐nutrient subsidies from anadromous fishes lead to both direct and indirect pathways of MDN incorporation into stream food webs. This suggests that organisms at many trophic levels derive a substantial proportion of their energy from marine resources when present. The current trend of declining anadromous fish populations means fewer nutrient‐rich marine subsidies being delivered to rivers, diminishing the ability to sustain elevated riverine productivity.  相似文献   

6.
The barcoding of mitochondrial cytochrome c oxidase subunit 1 (coI) gene was amplified and sequenced from 16 species of freshwater fishes found in Lake Wivenhoe (south‐eastern Queensland, Australia) to support monitoring of reservoir fish populations, ecosystem function and water health. In this study, 630–650 bp sequences of the coI barcoding gene from 100 specimens representing 15 genera, 13 families and two subclasses of fishes allowed 14 of the 16 species to be identified and differentiated. The mean ± s.e . Kimura 2 parameter divergence within and between species was 0·52 ± 0·10 and 23·8 ± 2·20% respectively, indicating that barcodes can be used to discriminate most of the fish species accurately. The two terapontids, Amniataba percoides and Leiopotherapon unicolor, however, shared coI DNA sequences and could not be differentiated using this gene. A barcoding database was established and a qPCR assay was developed using coI sequences to identify and quantify proportional abundances of fish species in ichthyoplankton samples from Lake Wivenhoe. These methods provide a viable alternative to the time‐consuming process of manually enumerating and identifying ichthyoplankton samples.  相似文献   

7.
Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10N = ?0·000422x + 3·610000 (r2 = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (?0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (?0·000488) and Actinopterygii (?0·000413) follow this trend but Chondrichthyes decrease more rapidly (?0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7–7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya ). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep‐sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep‐sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling recovery from regional extinctions. Deep‐sea invasive families such as Ophidiidae and Liparidae make the greatest contribution to fish fauna at depths >6000 m.  相似文献   

8.
Daphnia lumholtzi comprises a substantial component of the zooplankton community during mid‐ to late‐summer in Lake Chautauqua, a floodplain lake along the Illinois River near Havana, Illinois. In order to quantify the utilization of D. lumholtzi by juvenile fishes, diet analyses were conducted for seven juvenile fish species collected from Lake Chautauqua during the 2001 annual drawdown period. Freshwater drum Aplodinotus grunniens and emerald shiner Notropis atherinoides demonstrated negative selectivity for D. lumholtzi relative to native zooplankton species whereas four species of fish (bluegill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis and black crappie Pomoxis nigromaculatus) consumed substantial amounts of D. lumholtzi. Although selectivity values for D. lumholtzi varied among these fish species, positive selection for D. lumholtzi increased similarly among larger size classes of each fish species, and corresponded with ontogenetic shifts in diet. Mean body length of D. lumholtzi consumed by 20–69 mm LT juvenile fishes ranged from 0·75 to 0·99 mm with a calculated total length range of 2·0–2·6 mm. Results from this study provide evidence that high abundances of D. lumholtzi in mid‐ to late‐summer provide an additional food source for several juvenile fish species during a time when abundances of large native cladoceran species (i.e. Daphnia) are low, and juvenile fishes are searching for larger prey associated with ontogenetic shifts from zooplankton to macroinvertebrates and fishes. Because zooplankton production is typically lower in rivers than in lakes, survivorship of juvenile fishes produced in floodplain lakes may be higher in riverine systems if they are not reliant on zooplankton as a primary food resource. Therefore, high abundances of D. lumholtzi may benefit juvenile fishes in managed floodplain lakes, such as Lake Chautauqua, by increasing growth and facilitating the transition from zooplanktivory to insectivory or piscivory.  相似文献   

9.
Atlantic sturgeon Acipenser oxyrinchus surfacing behaviour was investigated in Minas Basin (45° 20′ N; 64° 00′ W) and the Bay of Fundy with pop‐up satellite archival tags (MiniPAT) measuring physical variables (pressure, temperature, light ) . Of six tags deployed during June and July, five provided pop‐up locations and two were recovered after c. 4 months. Analysis of recovered archival data revealed that the frequency of surfacing events was highest (78·9%) when A. oxyrinchus were in Minas Basin at depths <10 m. Surfacing frequency decreased substantially when fish migrated into greater depths of the Bay of Fundy (>40 m). The tidal cycle in Minas Basin had a significant relationship to surfacing frequency, with the most surfacing events (49·5%) occurring on the flood tide, from mid‐ to high‐tide. Surfacing events ranged from 0–12 a day and the maximum number occurred between 2300 and 0300 hours. Maximum surfacing ascent speeds ranged from 0·50 to 4·17 m s?1 and maximum descent speeds ranged from 0·17 to 3·17 m s?1. Buoyancy control, by gulping air to inflate the gas bladder, is proposed as the main reason for surfacing behaviour in A. oxyrinchus.  相似文献   

10.
In egg‐laying species, maternal oviposition choice can influence egg survival and offspring phenotypes. According to the maternal‐preference offspring‐performance hypothesis, females should choose oviposition sites that are optimal for offspring fitness. However, in thermally challenging environments, maternal oviposition behaviour may be constrained by the limited availability of suitable oviposition sites. We investigated nest‐site selection in a nocturnal lizard [velvet gecko Oedura lesueurii (Duméril and Bibron)] that inhabits a thermally challenging environment in south‐eastern Australia. The viability of these gecko populations is critical for the persistence of an endangered snake species (Hoplocephalus bungaroides Wagler) that feeds heavily on velvet geckos. Female geckos chose nest sites nonrandomly, with 87% of nests (N = 30) being laid in deep crevices. By contrast, only 13% of clutches were laid under rocks, which were the most readily available potential nest sites. Nest success in crevices was high (100%), but no eggs hatched from nests under rocks. Temperatures in nest crevices remained relatively low and constant throughout the incubation period (mean = 22.7 °C, range 21.0–24.5 °C), whereas thermal regimes under rocks showed large diurnal fluctuations. Geckos selected crevices that were deeper, had less canopy cover, and were warmer than most available crevices; in 85% of cases, such crevices were used simultaneously by more than one female. The thermally distinctive attributes of nest sites, and their frequent communal use, suggest that nest sites are a scarce resource for female velvet geckos, and that the shading of rock outcrops through vegetation encroachment may influence nest success in this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 250–259.  相似文献   

11.
The fish stock of a deep temperate, mesotrophic lake was sampled at different depths using a fixed‐frame fry trawl, during two nights in mid‐September 2009. Additionally, horizontal and vertical hydroacoustics were used simultaneously to evaluate fish abundance and biomass estimates obtained by the trawl. Roach Rutilus rutilus and smelt Osmerus eperlanus were the dominant species of young‐of‐the‐year (YOY) fish in the trawl catches from the surface layers (0–9 m). Bleak Alburnus alburnus dominated the catch of older fish in the upper part of the surface profile (0–6 m). Around the thermocline (9–13 m) smelt dominated the catches of both the YOY and older fish. Beneath the thermocline (13–36 m) vendace Coregonus albula dominated the catch of YOY fish, and smelt was the only species of older fish in the trawl catches. Species composition, abundance and biomass of the YOY and older fish were heterogeneous throughout the depth profiles of the lake, but only abundance differed significantly between the layers. The hydroacoustics gave relatively similar estimates of abundance and biomass to those obtained by the trawl in all the depths sampled. Our results indicate that there is a clear separation of small fish of different species along the vertical profile of a deep temperate lake during the night, and an unequal vertical distribution of fish abundance and biomass. The similarity of the trawl and hydroacoustics estimates of abundances and biomass indicated that the trawl sampling did not cause important avoidance reactions of small fish during the night in this deep temperate lake (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   

13.
In August 2004 and 2005, an extensive study of the fish community was carried out in the largest water supply reservoir in the Czech Republic and Central Europe, the canyon‐shaped ?elivka Reservoir, using a fleet of Nordic multimesh gillnets. Fishes were sampled at eight locations along the longitudinal profile of the reservoir and at five benthic depth layers covering depths from the surface down to 18 m (benthic gillnet 1·5 m high), and at three pelagic depth layers down to the depth of 5 m above the bottom (pelagic gillnets 4·5 m high). Catches of both juvenile (age 0+ year) and adult (fishes >1 year) fishes were highest in the upper layers of the water column (i.e. in the epilimnion down to 5 m, and down to 10 m in the benthic habitats). Along the tributary–dam axis in the pelagic habitats, both juvenile and adult fishes preferred the upper part of the reservoir, where the maximum number of species and also the greatest abundance of zooplankton were found. In the benthic habitats, fishes selected location according to factors other than trophic status. More juvenile fishes were recorded in the benthic habitats than in the pelagic habitats. Depth had the largest explanatory power for predicting fish community composition, followed by the affiliation with benthic and pelagic habitats, and location on the longitudinal axis of the reservoir. The fish community was represented mainly by cyprinids and consisted of two distinct groups of species, with bleak Alburnus alburnus, rudd Scardinius erythrophthalmus and asp Aspius aspius dominating the offshore group while perch Perca fluviatilis and ruffe Gymnocephalus cernuus were affiliated with the inshore group of the adult fish community. Roach Rutilus rutilus, bream Abramis brama and pikeperch Sander lucioperca occurred in important proportions in both the inshore and the offshore zones. All species, with the exceptions of adult perch (1+ year and older), 0+ year perch and 0+ year roach, preferred the most eutrophic tributary part of the reservoir. The fish community was relatively stable between the 2 years sampled.  相似文献   

14.
Adult movement scale was quantified for two tropical Caribbean diadromous fishes, bigmouth sleeper Gobiomorus dormitor and mountain mullet Agonostomus monticola, using passive integrated transponders (PITs) and radio‐telemetry. Large numbers of fishes were tagged in Río Mameyes, Puerto Rico, U.S.A., with PITs and monitored at three fixed locations over a 2·5 year period to estimate transition probabilities between upper and lower elevations and survival probabilities with a multistate Cormack–Jolly–Seber model. A sub‐set of fishes were tagged with radio‐transmitters and tracked at weekly intervals to estimate fine‐scale dispersal. Changes in spatial and temporal distributions of tagged fishes indicated that neither G. dormitor nor A. monticola moved into the lowest, estuarine reaches of Río Mameyes during two consecutive reproductive periods, thus demonstrating that both species follow an amphidromous, rather than catadromous, migratory strategy. Further, both species were relatively sedentary, with restricted linear ranges. While substantial dispersal of these species occurs at the larval stage during recruitment to fresh water, the results indicate minimal dispersal in spawning adults. Successful conservation of diadromous fauna on tropical islands requires management at both broad basin and localized spatial scales.  相似文献   

15.
In this study, animal‐borne telemetry with temperature sensors was coupled with extensive habitat temperature monitoring in a dimictic reservoir, to test the following hypotheses: behavioural thermoregulation occurs throughout the year and temperature selection varies on a diel and seasonal basis, in a winter‐specialist diel‐migrating fish. Burbot Lota lota demonstrated nightly behavioural thermoregulation throughout the year, with a large seasonal shift between selection for very cold temperatures (<2° C) optimal for reproduction during the spawning period and selection for warmer temperatures (12–14° C) optimal for hunting and feeding during non‐reproductive periods. During daylight hours, while L. lota avoided habitats warmer than optimal for reproduction and feeding during the spawning and non‐reproductive periods, respectively, active selection was limited to selection for 4–6° C habitat during the prespawning period. Although behavioural thermoregulation explained the night‐time migration, behavioural thermoregulation only partially explained daytime behaviour, indicating that diel migration is best explained by a combination of factors. Thus, thermal‐habitat selection was a good predictor of night‐time habitat occupancy in a diel‐migrating species. Together, these results show that thermal‐habitat selection by fishes may be important throughout the year and a more seasonally plastic behaviour than previously recognized.  相似文献   

16.
We collected gravid king ratsnakes (Elaphe carinata) from three geographically separated populations in Chenzhou (CZ), Lishui (LS) and Dinghai (DH) of China to study the geographical variation in female reproductive traits and trade‐offs between the size and number of eggs. Not all reproductive traits varied among the three populations. Of the traits examined, five (egg‐laying date, post‐oviposition body mass, clutch size, egg mass and egg width) differed among the three populations. The egg‐laying date, ranging from late June to early August, varied among populations in a geographically continuous trend, with females at the most northern latitude (DH) laying eggs latest, and females at the most southern latitude (CZ) laying eggs earliest. Such a trend was less evident or even absent in the other traits that differed among the three populations. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar to each other in most traits examined. LS females were distinguished from CZ and DH females by the fact that they laid a greater number of eggs, but these were smaller. The egg size–number trade‐off was evident in each of the three populations and, at a given level of relative fecundity, egg mass was significantly greater in the DH population than in the LS population. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 701–709.  相似文献   

17.
In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free‐living stages of parasites are food items for free‐living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.  相似文献   

18.
Eight hatchery‐reared Atlantic salmon Salmo salar post‐smolts, implanted with acoustic depth sensing transmitters and manually tracked for 5–12 h in the Hardangerfjord (Norway), spent most of their time (49–99%) at 1–3 m depth during the day, whereas four of seven fish tracked were found close (<0·5 m) to the surface at night, with a strong negative cross‐correlation between general swimming depth and surface light intensity. Hence, the actual swimming depth of post‐smolts during their early marine migration may depend on the light conditions, although the individual variation in vertical movement pattern was large. No cross‐correlations were found between light intensity and swimming depth during daytime periods with rapid changes in light intensity, indicating that other factors than light intensity were important in initiating the irregular dives that were recorded down to 6·5 m depth.  相似文献   

19.
At the Cocos (Keeling) Islands in the north‐eastern Indian Ocean >592 fishes from at least 11 species died in a series of events in December 2007, January and February 2008 and April 2009. The dead fishes were from a wide range of taxonomic families, indicating that conditions exceeded the tolerances of a broad array of species. The 2007–2008 die‐off events occurred on the warmest and calmest days of a significantly warmer and calmer summer. Fishes died in the southern inshore areas of the coral atoll lagoon at survey sites where seawater temperature was highest (33–35° C) and dissolved oxygen was lowest (1·4–1·8 mg l?1). The water temperature at these fish‐kill survey sites (33–35° C) was significantly warmer than previous years (1997 to 2005, mean ±s.e. = 28·7 ± 0·1° C). Fishes probably died because they were unable to obtain the additional oxygen required for metabolism at higher temperatures. Repeated die‐off events over the last 130 years indicate that some fishes have not yet adapted to rises in seawater temperature. This study provides empirical evidence to support suggestions that differences in physiological tolerances to increasing sea temperatures may be important in determining the structure of future coral‐reef fish communities with respect to climate change.  相似文献   

20.
An underwater video surveillance system known as TrapCam was used to continuously record (15 ×c. 24 h periods) fish behaviour within and immediately surrounding an experimental fish trap situated in a coral reef ecosystem in the United States Virgin Islands. Of the 100 fishes (18 species, 12 families) trapped, surgeonfishes (Acanthuridae) and snappers (Lutjanidae) were most common. Thirteen distinctively identifiable behaviours were observed for trapped fishes. Species did not differ significantly in the proportion of time allocated to different behaviours (ANOSIM, R = 0·142). Doctorfish Acanthurus chirurgus and grey angelfish Pomacanthus arcuatus allocated the largest proportion of their recorded time to enter and exit the trap. Fishes spent an average of 15 min in the trap before escaping. Sixty‐seven per cent of trap approaches consisted of an individual of the same species as one already trapped suggesting that conspecific attraction may have occurred. Fifteen per cent of trapped species were observed with abrasions to the head and 70% were observed approaching the trap corners. The results of this study provide a greater understanding of the behavioural interactions between fishes and traps that can help explain patterns of catch composition, the physical condition of fishes in traps and inform design of gear modifications to optimize by‐catch reduction in the trap fishery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号