首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton-coupled oligopeptide transporters (POTs) utilize the electrochemical proton gradient to facilitate uptake of di- or tripeptide molecules. YjdL is one of four POTs found in Escherichia coli. It has shown an extraordinary preference for di- rather than tripeptides, and is therefore significantly different from prototypical POTs such as the human hPepT1. Nonetheless YjdL contains several highly conserved POT residues, which include Glu388 that is located in the putative substrate binding cavity. Here we present biophysical characterization of WT-YjdL and Glu388Gln. Isothermal titration calorimetrical studies exhibit a Kd of 14 μM for binding of Ala-Lys to WT-YjdL. Expectedly, no binding could be detected for the tripeptide Ala-Ala-Lys. Surprisingly however, binding could not be detected for Ala-Gln, although earlier studies indicated inhibitory potencies of Ala-Gln to be comparable to Ala-Lys (IC50 values of 0.6 compared to 0.3 mM). Finally, Ala-Lys binding to Glu388Gln was also undetectable which may support a previously suggested role in interaction with the ligand peptide N-terminus.  相似文献   

2.
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes.  相似文献   

3.
Recombinant human lecithin‐cholesterol acyltransferase Fc fusion (huLCAT‐Fc) is a chimeric protein produced by fusing human Fc to the C‐terminus of the human enzyme via a linker sequence. The huLCAT‐Fc homodimer contains five N‐linked glycosylation sites per monomer. The heterogeneity and site‐specific distribution of the various glycans were examined using enzymatic digestion and LC‐MS/MS, followed by automatic processing. Almost all of the N‐linked glycans in human LCAT are fucosylated and sialylated. The predominant LCAT N‐linked glycoforms are biantennary glycans, followed by triantennary sugars, whereas the level of tetraantennary glycans is much lower. Glycans at the Fc N‐linked site exclusively contain typical asialobiantennary structures. HuLCAT‐Fc was also confirmed to have mucin‐type glycans attached at T407 and S409. When LCAT‐Fc fusions were constructed using a G‐S‐G‐G‐G‐G linker, an unexpected +632 Da xylose‐based glycosaminoglycan (GAG) tetrasaccharide core of Xyl‐Gal‐Gal‐GlcA was attached to S418. Several minor intermediate species including Xyl, Xyl‐Gal, Xyl‐Gal‐Gal, and a phosphorylated GAG core were also present. The mucin‐type O‐linked glycans can be effectively released by sialidase and O‐glycanase; however, the GAG could only be removed and localized using chemical alkaline β‐elimination and targeted LC‐MS/MS. E416 (the C‐terminus of LCAT) combined with the linker sequence is likely serving as a substrate for peptide O‐xylosyltransferase. HuLCAT‐Fc shares some homology with the proposed consensus site near the linker sequence, in particular, the residues underlined PPP E416GS418G G G GDK. GAG incorporation can be eliminated through engineering by shifting the linker Ser residue downstream in the linker sequence.  相似文献   

4.
Oxidative stress, caused by reactive oxygen species (ROS), is a major contributor to inflammatory bowel disease (IBD)‐associated neoplasia. We mimicked ROS exposure of the epithelium in IBD using non‐tumour human colonic epithelial cells (HCEC) and hydrogen peroxide (H2O2). A population of HCEC survived H2O2‐induced oxidative stress via JNK‐dependent cell cycle arrests. Caspases, p21WAF1 and γ‐H2AX were identified as JNK‐regulated proteins. Up‐regulation of caspases was linked to cell survival and not, as expected, to apoptosis. Inhibition using the pan‐caspase inhibitor Z‐VAD‐FMK caused up‐regulation of γ‐H2AX, a DNA‐damage sensor, indicating its negative regulation via caspases. Cell cycle analysis revealed an accumulation of HCEC in the G1‐phase as first response to oxidative stress and increased S‐phase population and then apoptosis as second response following caspase inhibition. Thus, caspases execute a non‐apoptotic function by promoting cells through G1‐ and S‐phase by overriding the G1/S‐ and intra‐S checkpoints despite DNA‐damage. This led to the accumulation of cells in the G2/M‐phase and decreased apoptosis. Caspases mediate survival of oxidatively damaged HCEC via γ‐H2AX suppression, although its direct proteolytic inactivation was excluded. Conversely, we found that oxidative stress led to caspase‐dependent proteolytic degradation of the DNA‐damage checkpoint protein ATM that is upstream of γ‐H2AX. As a consequence, undetected DNA‐damage and increased proliferation were found in repeatedly H2O2‐exposed HCEC. Such features have been associated with neoplastic transformation and appear here to be mediated by a non‐apoptotic function of caspases. Overexpression of upstream p‐JNK in active ulcerative colitis also suggests a potential importance of this pathway in vivo.  相似文献   

5.
A new series of 1H‐imidazol‐1‐yl substituted 8‐phenylxanthine analogs has been synthesized to study the effects of the imidazole group on the binding affinity of compounds for adenosine receptors. Competition binding studies of these compounds were carried out in vitro with human cloned receptors using [3H]DPCPX and [3H]ZM 241385 as radioligands at A1 and A2A adenosine receptors, respectively. The effect of the substitution pattern of the (imidazolyl)alkoxy group on various positions of the phenyl ring at C(8) was also studied. The xanthine derivatives displayed varying degrees of affinity and selectivity towards A1 and A2A receptor subtypes despite a common but variedly substituted Ar C(8).  相似文献   

6.
Aims: To investigate the in vitro antiherpes effects of the crude aqueous extract obtained from Cecropia glaziovii leaves and their related fractions, the n‐butanol fraction (n‐BuOH) and the C‐glycosylflavonoid‐enriched fraction (MeOHAMB), and to determine the viral multiplication step(s) upon which this C‐glycosylflavonoid‐enriched fraction acts. Methods and Results: The antiviral activity was evaluated against human herpes virus types 1 and 2 (HHV‐1, HHV‐2) by plaque reduction assay. The mode of action of the most active fraction was investigated by a set of assays, and the results demonstrated that MeOHAMB fraction exerts anti‐herpes action by the reduction of viral infectivity (only against HHV‐2); by the inhibition of virus entry into cells; by the inhibition of cell‐to‐cell virus spread as well as by the impaired levels of envelope proteins of HHV‐1. The high‐performance liquid chromatography (HPLC)–photo‐diode array (PDA) analysis showed that the C‐glycosylflavonoids are the major constituents of this fraction. Conclusions: These data showed that the MeOHAMB fraction has an antiviral activity against HHV types 1 and 2. The C‐glycosylflavonoids are the major constituents of this fraction, which suggests that they could be one of the compounds responsible for the detected anti‐herpes activity. Significance and Impact of the Study: The MeOHAMB fraction can be regarded as a phytopharmaceutical candidate for the treatment of herpetic infections.  相似文献   

7.
The conversion of carbon dioxide (CO2) and bicarbonate (HCO3) to each other is very important for living metabolism. Carbonic anhydrase (CA, E.C.4.2.1.1), a metalloenzyme familly, catalyzes the interconversion of these ions (CO2 and HCO3) and are very common in living organisms. In this study, a series of novel 2‐amino‐3‐cyanopyridines supported with some functional groups was synthesized and tested as potential inhibition effects against both cytosolic human CA I and II isoenzymes (hCA I and II) using by Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. The structural elucidations of novel 2‐amino‐3‐cyanopyridines were achieved by NMR, IR, and elemental analyses. K i values of the novel synthesized compounds were found in range of 2.84–112.44 μM against hCA I and 2.56–31.17 μM against hCA II isoenzyme. While compound 7d showed the best inhibition activity against hCA I (K i: 2.84 μM), the compound 7b demonstrated the best inhibition profile against hCA II isoenzyme (K i: 2.56 μM).  相似文献   

8.
A series of novel ethyl 2,7‐dimethyl‐4‐oxo‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐4,5‐dihydro‐3H‐pyrano[2,3‐d]pyrimidine‐6‐carboxylate derivatives 7a – 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF‐7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a , 7b , 7f , 7l , and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC50 ranging from 0.69 to 6.74 μm . Molecular docking studies revealed that the compounds 7a , 7b , 7f , 7l , and 7m are potent inhibitors of human DNA topoisomerase‐II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, kb, from UV/VIS absorptional binding studies of 7a and 7l with CT‐DNA were 10.77 × 104, 6.48 × 104, respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents.  相似文献   

9.
Proteinase inhibitors extracted form medicinal plants are an interesting source of new drugs. Modifications in the structure of some of this kind of macromolecules could also lead to compounds of interesting biological properties. In this work, we synthesized and tested one fragment containing the reactive site of the Bauhinia bauhinioides kallikrein inhibitor (BbKI), denoted BbKI51–62, and a related analog (P2) in which a proline residue was inserted in order to mimic the N‐terminal region of the bradykinin molecule. The related retro‐inverso counterparts Ri‐BbKI51–62 and Ri‐P2 were also included. The ability of these peptides to induce contraction of stomach fundus isolated from mouse was evaluated as well as their capability to induce calcium release from a cell culture of smooth muscle from guinea pig ileum. The conformational properties of the peptides were evaluated by circular dichroism and their resistance to enzymatic degradation by exposure to human blood plasma. Our results show that neither the parent BbKI51–62 nor its Ri‐BbKI51–62 analog exhibit bradykinin‐like activity, although the retro‐inverso isomer was resistant to blood plasma degradation. On the other hand, the peptides P2 and Ri‐P2 presented contractile activities on gastric smooth muscle from stomach fundus possibly by acting via B‐2 receptor. Both compounds also induce calcium release from guinea pig ileum muscle cells in a manner similar to bradykinin. Moreover, both compounds also inhibited porcine pancreatic kallikrein. However, conformational analysis did not reveal any direct correlation between structure and biological effects. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The mechanism by which H+ alters the kinetics of the H+-coupled peptide transporters PEPT 1 and PEPT 2 was investigated in two different cell lines which differentially express these transporters, namely Caco-2 cells (PEPT 1) and SKPT cells (PEPT 2). The effects of H+ on the affinity and the maximal velocity of Gly-Sar uptake were analyzed in these cells under identical conditions. In both cells, H+ influenced only the maximal velocity of uptake and not the apparent affinity. The effects of H+ on the IC50 values (i.e., concentration necessary to cause 50% inhibition) of the cationic dipeptide Ala-Lys and the anionic dipeptide Ala-Asp for inhibition of Gly-Sar uptake were also investigated. H+ did not change the IC50 value for Ala-Lys but did decrease the IC50 value for Ala-Asp considerably. The influence of diethylpyrocarbonate (DEP) on the kinetic parameters of PEPT 1 and PEPT 2 was then studied. Histidyl residues are the most likely amino acid residues involved in H+ binding and translocation in H+-coupled transport systems and DEP is known to chemically modify histidyl residues and block their function. DEP treatment altered the maximal velocity of Gly-Sar uptake but had no effect on its Kt (Michaelis-Menten constant) or the IC50 values of Ala-Lys or Ala-Asp for the inhibition of Gly-Sar uptake. It is concluded that H+ stimulates PEPT 1 and PEPT 2 primarily by increasing the maximal velocity of the transporters with no detectable influence on the substrate affinity.  相似文献   

11.
Objective: Obesity is associated with elevated oxidative stress and low‐grade systemic inflammation. We have demonstrated recently that 1α,25‐(OH)2‐D3 promotes reactive oxygen species production in cultured adipocytes, whereas suppression of 1α,25‐(OH)2‐D3 by increasing dietary calcium down‐regulates diet‐induced oxidative stress in aP2‐agouti transgenic mice. However, whether the anti‐obesity effect of dietary calcium plays a role in regulation of obesity‐associated inflammation is not clear. Research Methods and Procedures: We investigated the role of dietary calcium in the regulation of inflammatory cytokine production in aP2‐agouti transgenic mice fed low‐ and high‐calcium obesigenic diets and in the modulation of cytokine production by 1α,25‐(OH)2‐D3 in cultured murine and human adipocytes. Results: The high‐calcium diet inhibited the expression of pro‐inflammatory factors tumor necrosis factor α and interleukin (IL)‐6 by 64% and 51%, respectively (p < 0.001), in visceral fat, stimulated the expression of the anti‐inflammatory factors IL‐15 and adiponectin by 52% (p = 0.001) and 54% (p = 0.025), respectively, in visceral fat, and induced a 2‐fold increase in IL‐15 expression in soleus muscle (p = 0.01) compared with litter mate controls on a low‐calcium diet. 1α,25‐(OH)2‐D3 also markedly stimulated the expression of tumor necrosis factor α (p < 0.001) and IL‐6 (p = 0.016) in differentiated 3T3‐L1 adipocytes and increased IL‐6 (p = 0.004) and IL‐8 (p < 0.001) production in differentiated human adipocytes. These effects were blocked by calcium channel antagonism with nifedipine. Discussion: These data demonstrate that 1α,25‐(OH)2‐D3 favors inflammatory cytokine expression and inhibits anti‐inflammatory cytokine expression; accordingly, suppression of 1α,25‐(OH)2‐D3 by dietary calcium inhibits adipocyte‐derived inflammation associated with obesity.  相似文献   

12.
Aims: To establish whether investigated subtyping methods could identify any specific characteristics that distinguish Swedish VTEC O157:H7 strains isolated from cattle farms associated with human enterohaemorrhagic Escherichia coli (EHEC) cases from cattle strains isolated in prevalence studies. Methods and Results: Strains (n = 32) isolated in a dairy herd prevalence study and strains isolated from farms associated with human cases (n = 13) were subjected to typing. Partial sequencing of the vtx2 genes could not identify any unique variants of vtx2 or vtx2c in strains associated with human cases. A specific variant of VTEC O157:H7, which was overrepresented among farms associated with human cases (P = 0·01), was by two different single‐nucleotide‐polymorphism (SNP) assays identified as clade 8, a subgroup of VTEC O157:H7 strains considered to be putatively hypervirulent. Multi‐locus variable number tandem repeat analysis (MLVA) typing of all strains produced similar results as pulsed‐field gel electrophoresis (PFGE) typing regarding clustering of the strains, but MLVA distinguished slightly better among strains than PFGE. Conclusion: In Sweden, VTEC O157:H7 strains from the putatively hypervirulent clade 8 are overrepresented among isolates from cattle farms associated with human cases compared with VTEC O157:H7 strains isolated in prevalence studies. Significance and Impact of the Study: Real‐time PCR SNP typing for clade 8 can be used to identify cattle farms that are at higher risk of causing EHEC infections in humans.  相似文献   

13.
We report a comparative study on the use of four different mesoporous titanium dioxide (TiO2) photo‐electrodes for the fabrication of solid‐state dye‐sensitized solar cells (sDSSCs). The photovoltaic parameters of the device correlate with several intrinsic properties of the film, based not only on its morphological features, as commonly considered in standard characterizations, but also on the transport and the electronic properties of the photo‐electrode. These properties differ significantly for TiO2 electrodes processed using different colloidal pastes, and are decisive for the photovoltaic efficiency, ranging from 3.7% up to 5.1%. In particular, the dielectric permittivity of each mesoporous layer (εeff) and the number of traps (Nt) determined by the space‐charge‐limited current (SCLC) theory are found to be a bottle‐neck for the charge transport, greatly influencing the fill factor (FF) and open circuit voltage (Voc) of the cells. In addition, a direct correlation between TiO2 surface potential with the Voc was established. Cross‐analysis of key macroscopic parameters of the films prior to integration in the devices, in particular focusing on the determination of the capacitance and surface potential shift of the TiO2 mesoporous anode, represents a straightforward yet powerful method to screen and select the most suitable TiO2 for applications in sDSSCs.  相似文献   

14.
USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target proteins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the other hand, ubiquitination participates in the regulation of several ion channels and transporters. USP18 sensitivity of transporters has, however, never been reported. The present study thus explored, whether USP18 modifies the activity of the peptide transporters PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin ligase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM) was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 significantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpression of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly increased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular functions include activity of the peptide transporters PEPT1 and PEPT2.  相似文献   

15.
Solution‐processed few‐layer MoS2 flakes are exploited as an active buffer layer in hybrid lead–halide perovskite solar cells (PSCs). Glass/FTO/compact‐TiO2/mesoporous‐TiO2/CH3NH3PbI3/MoS2/Spiro‐OMeTAD/Au solar cells are realized with the MoS2 flakes having a twofold function, acting both as a protective layer, by preventing the formation of shunt contacts between the perovskite and the Au electrode, and as a hole transport layer from the perovskite to the Spiro‐OMeTAD. As prepared PSC demonstrates a power conversion efficiency (η) of 13.3%, along with a higher lifetime stability over 550 h with respect to reference PSC without MoS2η/η = ?7% vs. Δη/η = ?34%). Large‐area PSCs (1.05 cm2 active area) are also fabricated to demonstrate the scalability of this approach, achieving η of 11.5%. Our results pave the way toward the implementation of MoS2 as a material able to boost the shelf life of large‐area perovskite solar cells in view of their commercialization.  相似文献   

16.
17.
Heme oxygenase‐1 (HO‐1) is an inducible antioxidant enzyme that degrades heme to three products, biliverdin, carbon monoxide (CO), and iron ion. The present study was originally designed to characterize the HO‐1 induction by Lumbricus extract as a potential cytoprotective mechanism. Through bioactivity‐guided fractionation, with human HepG2 cells as the cellular detector, surprisingly, we found that arsenic was enriched in the active fractions isolated from Lumbricus extract. Arsenic speciation was further carried out by liquid chromatography with inductively coupled plasma mass spectrometry (LC/ICP‐MS). Our results showed that Lumbricus extract contained two major arsenic species, arsenite (AsIII; 53.7%) and arsenate (AsV; 34.2%), and six minor arsenic species. Commercial sodium arsenite (NaAsO2) was used to verify the effects of Lumbricus extract on HO‐1 expression and related intracellular signaling pathways. Both p38 MAP kinase and NF‐E2‐related factor 2 (Nrf2) pathways were found to modulate HO‐1 induction by Lumbricus extract and NaAsO2. The cytotoxicity of arsenite was augmented by p38 MAP kinase inhibitor SB202190 and HO‐1 inhibitor tin protoporphyrin IX (SnPP), whereas p38 MAP kinase inhibitor SB202190 also inhibited HO‐1 induction by NaAsO2. These results suggest that arsenic‐containing compounds are responsible for HO‐1 induction by Lumbricus extract. Although the exact role of toxic arsenic compounds in the treatment of oxidative injury remains unclear, concomitant HO‐1 induction may be a key mechanism to antagonize the cytotoxicity of arsenic compounds in human cells.  相似文献   

18.
The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb . ex Heuff . were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram‐positive than Gram‐negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)‐1‐(2,4‐dihydroxyphenyl)‐3,7,11‐trimethyl‐3‐vinyldodeca‐6,10‐dien‐1‐one ( 2 ) and (2S*,3R*)‐2‐[(3E)‐4,8‐dimethylnona‐3,7‐dien‐1‐yl]‐2,3‐dihydro‐7‐hydroxy‐2,3‐dimethylfuro[3,2‐c]coumarin ( 4 ) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM , resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM , resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM ). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF‐7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50<11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF‐7 cell line, comparable to that of cisplatin (IC50=22.32±1.32 vs. 18.67±0.75μM ).  相似文献   

19.
20.
Individual variation in serotonergic function is associated with reactivity, risk for affective disorders, as well as an altered response to disease. Our study used a nonhuman primate model to further investigate whether a functional polymorphism in the promoter region for the serotonin transporter gene helps to explain differences in proinflammatory responses. Homology between the human and rhesus monkey polymorphisms provided the opportunity to determine how this genetic variation influences the relationship between a psychosocial stressor and immune responsiveness. Leukocyte numbers in blood and interleukin‐6 (IL‐6) responses are sensitive to stressful challenges and are indicative of immune status. The neutrophil‐to‐lymphocyte ratio and cellular IL‐6 responses to in vitro lipopolysaccharide stimulation were assessed in 27 juvenile male rhesus monkeys while housed in stable social groups (NLL = 16, NS = 11) and also in 18 animals after relocation to novel housing (NLL = 13, NS = 5). Short allele monkeys had significantly higher neutrophil‐to‐lymphocyte ratios than homozygous Long allele carriers at baseline [t(25) = 2.18, P = 0.02], indicative of an aroused state even in the absence of disturbance. In addition, following the housing manipulation, IL‐6 responses were more inhibited in short allele carriers (F1,16 = 8.59, P = 0.01). The findings confirm that the serotonin transporter gene‐linked polymorphism is a distinctive marker of reactivity and inflammatory bias, perhaps in a more consistent manner in monkeys than found in many human studies .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号