首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age‐related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)—known to accumulate on the ageing RPE's underlying Bruch's membrane in situ—on both key lysosomal cathepsins and NF‐κB signalling in RPE. Cathepsin L activity and NF‐κB effector levels decreased significantly following 2‐week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE‐related change of NF‐κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE‐exposed cells had significantly higher ratio of phospho‐p65(Ser536)/total p65 compared to non‐AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE‐related activation of NF‐κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF‐κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para‐inflammatory) mechanism but renders them more responsive to pro‐inflammatory stimuli.  相似文献   

4.
Subversion of antigen‐specific immune responses by intracellular pathogens is pivotal for successful colonisation. Bacterial pathogens, including Shigella, deliver effectors into host cells via the type III secretion system (T3SS) in order to manipulate host innate and adaptive immune responses, thereby promoting infection. However, the strategy for subverting antigen‐specific immunity is not well understood. Here, we show that Shigella flexneri invasion plasmid antigen H (IpaH) 4.5, a member of the E3 ubiquitin ligase effector family, targets the proteasome regulatory particle non‐ATPase 13 (RPN13) and induces its degradation via the ubiquitin–proteasome system (UPS). IpaH4.5‐mediated RPN13 degradation causes dysfunction of the 19S regulatory particle (RP) in the 26S proteasome, inhibiting guidance of ubiquitinated proteins to the proteolytically active 20S core particle (CP) of 26S proteasome and thereby suppressing proteasome‐catalysed peptide splicing. This, in turn, reduces antigen cross‐presentation to CD8+ T cells via major histocompatibility complex (MHC) class I in vitro. In RPN13 knockout mouse embryonic fibroblasts (MEFs), loss of RPN13 suppressed CD8+ T cell priming during Shigella infection. Our results uncover the unique tactics employed by Shigella to dampen the antigen‐specific cytotoxic T lymphocyte (CTL) response.  相似文献   

5.
ExoU is an important virulence factor in acute Pseudomonas aeruginosa infections. Here, we unveiled the mechanisms of ExoU‐driven NF‐κB activation by using human airway cells and mice infected with P. aeruginosa strains. Several approaches showed that PAFR was crucially implicated in the activation of the canonical NF‐κB pathway. Confocal microscopy of lungs from infected mice revealed that PAFR‐dependent NF‐κB activation occurred mainly in respiratory epithelial cells, and reduced p65 nuclear translocation was detected in mice PAFR?/? or treated with the PAFR antagonist WEB 2086. Several evidences showed that ExoU‐induced NF‐κB activation regulated PAFR expression. First, ExoU increased p65 occupation of PAFR promoter, as assessed by ChIP. Second, luciferase assays in cultures transfected with different plasmid constructs revealed that ExoU promoted p65 binding to the three κB sites in PAFR promoter. Third, treatment of cell cultures with the NF‐κB inhibitor Bay 11–7082, or transfection with IκBα negative‐dominant, significantly decreased PAFR mRNA. Finally, reduction in PAFR expression was observed in mice treated with Bay 11–7082 or WEB 2086 prior to infection. Together, our data demonstrate that ExoU activates NF‐κB by PAFR signalling, which in turns enhances PAFR expression, highlighting an important mechanism of amplification of response to this P. aeruginosa toxin.  相似文献   

6.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

7.
8.
9.
Nuclear factor‐kappa B (NF‐κB) as a prognostic marker remains unclear in non‐small cell lung cancer (NSCLC). Here, we studied NF‐κB‐p65 (p65) expression and phosphorylated NF‐κB‐p105 (p‐p105) expression in NSCLC and correlated the finding with overall survival (OS) and clinicopathological features. A total of 186 archival samples from patients with surgically resectable NSCLC were probed with p65 and p‐p105 (Ser 932). The p65‐positive expression and p‐p105‐positive expression were defined as distinct nuclear p65 and cytoplasmic p‐p105 labelling in at least 1% of tumour cells, respectively. The positive staining of p65 alone, p‐p105 alone and co‐expression of p65 and p‐p105 were observed in 61 (32.8%), 90 (48.4%) and 35 (18.8%) patients, respectively. Co‐expression of p65 and p‐p105 but not of either p65 or p‐p105 alone was associated with a poor prognosis. Patients with co‐expression of p65 and p‐p105 had a shorter OS than others, median OS 26.5 months versus 64.1 months, HR 1.85 (95% CI: 1.18–2.91), P = 0.007. There was no statistically significant association between clinicopathological characteristics and either p65 or p‐p105 alone or co‐expression of p65 and p‐p105. This indicates that co‐expression of p65 and p‐p105 was a poor prognostic factor, and pathologic studies of NF‐κB expression could include multiple pathway components in NSCLC.  相似文献   

10.
NF-κB plays a central role in modulating innate immune responses to bacterial infections. Therefore, many bacterial pathogens deploy multiple mechanisms to counteract NF-κB activation. The invasion of and subsequent replication of Shigella within epithelial cells is recognized by various pathogen recognition receptors as pathogen-associated molecular patterns. These receptors trigger innate defense mechanisms via the activation of the NF-κB signaling pathway. Here, we show the inhibition of the NF-κB activation by the delivery of the IpaH E3 ubiquitin ligase family member IpaH0722 using Shigella''s type III secretion system. IpaH0722 dampens the acute inflammatory response by preferentially inhibiting the PKC-mediated activation of NF-κB by ubiquitinating TRAF2, a molecule downstream of PKC, and by promoting its proteasome-dependent degradation.  相似文献   

11.
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti‐inflammatory, anti‐oxidant and anti‐apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)‐induced heart failure mouse model, through mitigating the TNF‐α–induced toxicity. We further used TNF‐α‐induced cardiac injury in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) to elucidate the underlying mechanisms. CGA pre‐treatment could reverse TNF‐α–induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF‐κB/p65 and major mitogen‐activated protein kinases (MAPKs) signalling pathways involved in TNF‐α–induced apoptosis of hiPSC‐CMs. Importantly, CGA can directly inhibit NF‐κB signal by suppressing the phosphorylation of NF‐κB/p65. As for the MAPKs, CGA suppressed the activity of only c‐Jun N‐terminal kinase (JNK), but enhanced extracellular signal‐regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF‐κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.  相似文献   

12.
13.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

14.
Proper regulation of NF‐κB activity is critical to maintain and balance the inflammatory response. Inactivation of the NF‐κB complex relies in part on the proteasome‐mediated degradation of promoter‐bound NF‐κB, but the detailed molecular mechanism initiating this process remains elusive. Here, we show that the methylation of the RelA subunit of NF‐κB has an important function in this process. Lysine methyltransferase Set9 physically associates with RelA in vitro and in vivo in response to TNF‐α stimulation. Mutational and mass spectrometric analyses reveal that RelA is monomethylated by Set9 at lysine residues 314 and 315 in vitro and in vivo. Methylation of RelA inhibits NF‐κB action by inducing the proteasome‐mediated degradation of promoter‐associated RelA. Depletion of Set9 by siRNA or mutation of the RelA methylation sites prolongs DNA binding of NF‐κB and enhances TNF‐α‐induced expression of NF‐κB target genes. Together, these findings unveil a novel mechanism by which methylation of RelA dictates the turnover of NF‐κB and controls the NF‐κB‐mediated inflammatory response.  相似文献   

15.
The functional role of the ubiquitin‐proteasome pathway during maternal‐to‐zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two‐cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000‐protein microarray and validate them using an in vitro ubiquitination system. We show that five substrates could be degraded by RNF114‐mediated ubiquitination, including TAB1. Furthermore, the degradation of TAB1 in mouse early embryos is required for MZT, most likely because it activates the NF‐κB pathway. Taken together, our study uncovers that RNF114‐mediated ubiquitination and degradation of TAB1 activate the NF‐κB pathway during MZT, and thus directly link maternal clearance to early embryo development.  相似文献   

16.
17.
Cutaneous and ocular injuries caused by sulfur mustard (SM; bis‐(2‐chloroethyl) sulfide) are characterized by severe inflammation and death of exposed cells. Given the known roles of p38MAPK and NF‐κB in inflammatory cytokine production, and the known roles of NF‐κB and p53 in cell fate, these pathways are of particular interest in the study of SM injury. In this study, we utilized inhibitory RNA (RNAi) targeted against p38α, the p50 subunit of NF‐κB, or p53 to characterize their role in SM‐induced inflammation and cell death in normal human epidermal keratinocytes (NHEK). Analysis of culture supernatant from 200 μM SM‐exposed cells showed that inflammatory cytokine production was inhibited by p38α RNAi but not by NF‐κB p50 RNAi. These findings further support a critical role for p38 in SM‐induced inflammatory cytokine production in NHEK and suggest that NF‐κB may not play a role in the SM‐induced inflammatory response of this cell type. Inhibition of NF‐κB by p50 RNAi did, however, partially inhibit SM‐induced cell death, suggesting a role for NF‐κB in SM‐induced apoptosis or necrosis. Interestingly, inhibition of p53 by RNAi potentiated SM‐induced cell death, suggesting that the role of p53 in SM injury, may be complex and not simply prodeath. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:155–164, 2010; Published online inWiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20321  相似文献   

18.
19.
Increased activation of the major pro‐inflammatory NF‐κB pathway leads to numerous age‐related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF‐κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF‐κB signalling, such as that which occurs in several age‐related chronic diseases. In this study, we investigated whether rapamycin could ameliorate age‐associated phenotypes in a mouse model of genetically enhanced NF‐κB activity (nfκb1?/?) characterized by low‐grade chronic inflammation, accelerated aging and CLD. We found that, despite showing no beneficial effects in lifespan and inflammaging, rapamycin reduced frailty and improved long‐term memory, neuromuscular coordination and tissue architecture. Importantly, markers of cellular senescence, a known driver of age‐related pathology, were alleviated in rapamycin‐fed animals. Our results indicate that, in conditions of genetically enhanced NF‐κB, rapamycin delays aging phenotypes and improves healthspan uncoupled from its role as a suppressor of inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号