首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Covalent modifications by Small Ubiquitin‐like MOdifier (SUMO) and ubiquitin conjugation are now recognized as independent posttranslational modifications (PTMs) employed by cells to reversibly regulate cellular signaling. SUMOylation in particular has emerged as a crucial cellular mechanism involved in multiple pathologies, including cancers, cardiovascular diseases, immunological and neurological disorders, as well as aging. Convergence of these two PTMs result in the ubiquitination of SUMOylated proteins, adding complexity in the modulation of protein functions. The SUMO‐Targeted Ubiquitin Ligases (STUbL) mediate this process, and RNF4, the mammalian STUbL, has been at the forefront in the understanding of this phenomenon. It has been shown to play important roles in a variety of cellular events, ranging from the maintenance of genomic integrity and hence, oncogenesis, to a role in development. Recent identification of direct and indirect RNF4 targets has revealed that the SUMOylation machinery is in itself targeted by RNF4, highlighting the complex nature of the signaling circuitry tightly regulating these processes. This review will touch upon both SUMOylation and ubiquitination, and will focus on how RNF4, which is at the heart of both these PTMs, modulates cellular signaling and promotes protein degradation. Moreover, the potential of therapeutically targeting RNF4 to improve cancer treatment is also explored.  相似文献   

2.
Repair of DNA double‐stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non‐homologous end‐joining (NHEJ) or error‐free homologous recombination. NHEJ precedes either by a classic, Lig4‐dependent process (C‐NHEJ) or an alternative, Lig4‐independent one (A‐NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere‐binding proteins are recognized as DSBs. In this report, we studied which end‐joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end‐to‐end chromosome fusions mediated by the C‐NHEJ pathway. In contrast, removal of Tpp1–Pot1a/b initiated robust chromosome fusions that are mediated by A‐NHEJ. C‐NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A‐NHEJ is a major pathway to process dysfunctional telomeres.  相似文献   

3.
The assembly of a protective cap onto the telomeres of eukaryotic chromosomes suppresses genomic instability through inhibition of DNA repair activities that normally process accidental DNA breaks. We show here that the essential Cdc13–Stn1–Ten1 complex is entirely dispensable for telomere protection in non‐dividing cells. However, Yku and Rap1 become crucially important for this function in these cells. After inactivation of Yku70 in G1‐arrested cells, moderate but significant telomere degradation occurs. As the activity of cyclin‐dependent kinases (CDK) promotes degradation, these results suggest that Yku stabilizes G1 telomeres by blocking the access of CDK1‐independent nucleases to telomeres. The results indeed show that both Exo1 and the Mre11/Rad50/Xrs2 complex are required for telomeric resection after Yku loss in non‐dividing cells. Unexpectedly, both asynchronously growing and quiescent G0 cells lacking Rap1 display readily detectable telomere degradation, suggesting an earlier unanticipated function for this protein in suppression of nuclease activities at telomeres. Together, our results show a high flexibility of the telomeric cap and suggest that distinct configurations may provide for efficient capping in dividing versus non‐dividing cells.  相似文献   

4.
5.
Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t‐circle‐tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single‐stranded tail. Structurally, the t‐circle‐tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II‐mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t‐circle‐tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA‐PKcs impairs telomere replication, leading to multiple‐telomere sites (MTS) and telomere shortening. Collectively, our results support a “looping‐out” mechanism, in which the stalled replication fork is cut out and cyclized to form t‐circle‐tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.  相似文献   

6.
Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non‐homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23MRE11‐Rad50‐Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1ATM activation nor 5′‐end resection was required for telomere fusion. Nuclease activity of Rad32MRE11 was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32MRE11 mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split‐molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ.  相似文献   

7.
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Telomeres, the nucleoprotein structures at the ends of linear chromosomes, promote genome stability by distinguishing chromosome termini from DNA double‐strand breaks (DSBs). Cells possess two principal pathways for DSB repair: homologous recombination and non‐homologous end joining (NHEJ). Several studies have implicated TRF2 in the protection of telomeres from NHEJ, but the underlying mechanism remains poorly understood. Here, we show that TRF2 inhibits NHEJ, in part, by recruiting human RAP1 to telomeres. Heterologous targeting of hRAP1 to telomeric DNA was sufficient to bypass the need for TRF2 in protecting telomeric DNA from NHEJ in vitro. On expanding these studies in cells, we find that recruitment of hRAP1 to telomeres prevents chromosome fusions caused by the loss of TRF2/hRAP1 from chromosome ends despite activation of a DNA damage response. These results provide the first evidence that hRAP1 inhibits NHEJ at mammalian telomeres and identify hRAP1 as a mediator of genome stability.  相似文献   

9.
Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1–3) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase‐mediated telomere repeat addition is negatively modulated by the levels of telomere‐bound Rap1‐Rif1‐Rif2 protein complex. Using a yeast strain defective in the major peroxiredoxin Tsa1 that is involved in ROS neutralization, we have investigated the effect of defective ROS detoxification on telomere DNA, telomerase, telomere‐binding proteins, and telomere length. Surprisingly, the tsa1 mutant does not show significant increase in steady‐state levels of oxidative DNA lesions at telomeres. The tsa1 mutant displays abnormal telomere lengthening, and reduction in oxidative exposure alleviates this phenotype. The telomere lengthening in the tsa1 cells was abolished by disruption of Est2, subtelomeric DNA, Rap1 C‐terminus, or Rif2, but not by Rif1 deletion. Although telomerase expression and activity are not altered, telomere‐bound Est2 is increased, while telomere‐bound Rap1 is reduced in the tsa1 mutant. We propose that defective ROS scavenging can interfere with pathways that are critical in controlling telomere length homeostasis.  相似文献   

10.
SUMOylation, the covalent attachment of a member of the small ubiquitin‐like modifier (SUMO) family of proteins to lysines in target substrates, is an essential post‐translational modification in eukaryotes. Microbial manipulation of SUMOylation recently emerged as a key virulence strategy for viruses and facultative intracellular bacteria, the latter of which have only been shown to deploy effectors that negatively regulate SUMOylation. Here, we demonstrate that the obligate intracellular bacterium, Anaplasma phagocytophilum, utilizes an effector, AmpA (A. phagocytophilum post‐translationally modified protein A) that becomes SUMOylated in host cells and this is important for the pathogen's survival. We previously discovered that AmpA (formerly APH1387) localizes to the A. phagocytophilum‐occupied vacuolar membrane (AVM). Algorithmic prediction analyses denoted AmpA as a candidate for SUMOylation. We verified this phenomenon using a SUMO affinity matrix to precipitate both native AmpA and ectopically expressed green fluorescent protein (GFP)‐tagged AmpA. SUMOylation of AmpA was lysine dependent, as SUMO affinity beads failed to precipitate a GFP‐AmpA protein when its lysine residues were substituted with arginine. Ectopically expressed and endogenous AmpA were poly‐SUMOylated, which was consistent with the observation that AmpA colocalizes with SUMO2/3 at the AVM. Only late during the infection cycle did AmpA colocalize with SUMO1, which terminally caps poly‐SUMO2/3 chains. AmpA was also detected in the cytosol of infected host cells, further supporting its secretion and likely participation in interactions that aid pathogen survival. Indeed, whereas siRNA‐mediated knockdown of Ubc9 – a necessary enzyme for SUMOylation – slightly bolstered A. phagocytophilum infection, pharmacologically inhibiting SUMOylation in infected cells significantly reduced the bacterial load. Ectopically expressed GFP‐AmpA served as a competitive agonist against native AmpA in infected cells, while lysine‐deficient GFP‐AmpA was less effective, implying that modification of AmpA lysines is important for infection. Collectively, these data show that AmpA becomes directly SUMOylated during infection, representing a novel tactic for A. phagocytophilum survival.  相似文献   

11.
12.
Elongation of the telomeric overhang by telomerase is counteracted by synthesis of the complementary strand by the CST complex, CTC1(Cdc13)/Stn1/Ten1. Interaction of budding yeast Stn1 with overhang‐binding Cdc13 is increased by Cdc13 SUMOylation. Human and fission yeast CST instead interact with overhang‐binding TPP1/POT1. We show that the fission yeast TPP1 ortholog, Tpz1, is SUMOylated. Tpz1 SUMOylation restricts telomere elongation and promotes Stn1/Ten1 telomere association, and a SUMO‐Tpz1 fusion protein has increased affinity for Stn1. Our data suggest that SUMO inhibits telomerase through stimulation of Stn1/Ten1 action by Tpz1, highlighting the evolutionary conservation of the regulation of CST function by SUMOylation.  相似文献   

13.
Pardo B  Marcand S 《The EMBO journal》2005,24(17):3117-3127
Telomeres protect chromosomes from end-to-end fusions. In yeast Saccharomyces cerevisiae, the protein Rap1 directly binds telomeric DNA. Here, we use a new conditional allele of RAP1 and show that Rap1 loss results in frequent fusions between telomeres. Analysis of the fusion point with restriction enzymes indicates that fusions occur between telomeres of near wild-type length. Telomere fusions are not observed in cells lacking factors required for nonhomologous end joining (NHEJ), including Lig4 (ligase IV), KU and the Mre11 complex. SAE2 and TEL1 do not affect the frequency of fusions. Together, these results show that Rap1 is essential to block NHEJ between telomeres. Since the presence of Rap1 at telomeres has been conserved through evolution, the establishment of NHEJ suppression by Rap1 could be universal.  相似文献   

14.
Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.  相似文献   

15.
SUMO is a protein posttranslational modifier. SUMO cycle components are believed to be conserved in all eukaryotes. Proteomic analyses have lead to the identification a wealth of SUMO targets that are involved in almost every cellular function in eukaryotes. In this article, we describe the characterization of SUMO Cycle components in Hydra, a Cnidarian with an ability to regenerate body parts. In cells, the translated SUMO polypeptide cannot conjugate to a substrate protein unless the C‐terminal tail is cleaved, exposing the di‐Glycine motif. This critical task is done by SUMO proteases that in addition to SUMO maturation are also involved in deconjugating SUMO from its substrate. We describe the identification, bioinformatics analysis, cloning, and biochemical characterization of Hydra SUMO cycle components, with a focus on SUMO and SUMO proteases. We demonstrate that the ability of SUMO proteases to process immature SUMO is conserved from Hydra to flies. A transgenic Hydra, expressing a SUMO‐GFP fusion protein under a constitutive actin promoter, is generated in an attempt to monitor the SUMO Cycle in vivo as also to purify and identify SUMO targets in Hydra. genesis 51:619–629. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Jian Lu  Yie Liu 《The EMBO journal》2010,29(2):398-409
Telomeres consist of short guanine‐rich repeats. Guanine can be oxidized to 8‐oxo‐7,8‐dihydroguanine (8‐oxoG) and 2,6‐diamino‐4‐hydroxy‐5‐formamidopyrimidine (FapyG). 8‐oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Δ) strain shows telomere lengthening that is dependent on telomerase and/or Rad52p‐mediated homologous recombination. 8‐oxoG in telomeric repeats attenuates the binding of the telomere binding protein, Rap1p, to telomeric DNA in vitro. Moreover, the amount of telomere‐bound Rap1p and Rif2p is reduced in ogg1Δ strain. These results suggest that oxidized guanines may perturb telomere length equilibrium by attenuating telomere protein complex to function in telomeres, which in turn impedes their regulation of pathways engaged in telomere length maintenance. We propose that Ogg1p is critical in maintaining telomere length homoeostasis through telomere guanine damage repair, and that interfering with telomere length homoeostasis may be one of the mechanism(s) by which oxidative DNA damage inflicts the genome.  相似文献   

17.
DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere‐binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere‐like sequence near the origins. Here, we showed using a lacO/LacI‐GFP system that Taz1‐dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication‐timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication‐timing control and telomeric association of Taz1‐dependent late origins, and this requirement was bypassed by a minishelterin Tpz1‐Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin‐mediated telomeric association of the origins at the onset of S phase.  相似文献   

18.
A‐type lamins are intermediate filament proteins that provide a scaffold for protein complexes regulating nuclear structure and function. Mutations in the LMNA gene are linked to a variety of degenerative disorders termed laminopathies, whereas changes in the expression of lamins are associated with tumourigenesis. The molecular pathways affected by alterations of A‐type lamins and how they contribute to disease are poorly understood. Here, we show that A‐type lamins have a key role in the maintenance of telomere structure, length and function, and in the stabilization of 53BP1, a component of the DNA damage response (DDR) pathway. Loss of A‐type lamins alters the nuclear distribution of telomeres and results in telomere shortening, defects in telomeric heterochromatin, and increased genomic instability. In addition, A‐type lamins are necessary for the processing of dysfunctional telomeres by non‐homologous end joining, putatively through stabilization of 53BP1. This study shows new functions for A‐type lamins in the maintenance of genomic integrity, and suggests that alterations of telomere biology and defects in DDR contribute to the pathogenesis of lamin‐related diseases.  相似文献   

19.
The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1 + have revealed that the long N-terminal region (1–456 a.a. [amino acids]) of Rap1 (full length: 693 a.a.) is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457–693 a.a.) containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus) and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.  相似文献   

20.
Recent findings show that chromatin dynamics and nuclear organization are not only important for gene regulation and DNA replication, but also for the maintenance of genome stability. In yeast, nuclear pores play a role in the maintenance of genome stability by means of the evolutionarily conserved family of SUMO-targeted Ubiquitin ligases (STUbLs). The yeast Slx5/Slx8 STUbL associates with a class of DNA breaks that are shifted to nuclear pores. Functionally Slx5/Slx8 are needed for telomere maintenance by an unusual recombination-mediated pathway. The mammalian STUbL RNF4 associates with Promyelocytic leukaemia (PML) nuclear bodies and regulates PML/PML-fusion protein stability in response to arsenic-induced stress. A subclass of PML bodies support telomere maintenance by the ALT pathway in telomerase-deficient tumors. Perturbation of nuclear organization through either loss of pore subunits in yeast, or PML body perturbation in man, can lead to gene amplifications, deletions, translocations or end-to-end telomere fusion events, thus implicating SUMO and STUbLs in the subnuclear organization of select repair events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号