首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.

Background

Multimeric protein complexes have a role in many cellular pathways and are highly interconnected with various other proteins. The characterization of their domain composition and organization provides useful information on the specific role of each region of their sequence.

Results

We identified a new module, the PAM domain (P CI/PINT a ssociated m odule), present in single subunits of well characterized multiprotein complexes, like the regulatory lid of the 26S proteasome, the COP-9 signalosome and the Sac3-Thp1 complex. This module is an around 200 residue long domain with a predicted TPR-like all-alpha-helical fold.

Conclusions

The occurrence of the PAM domain in specific subunits of multimeric protein complexes, together with the role of other all-alpha-helical folds in protein-protein interactions, suggest a function for this domain in mediating transient binding to diverse target proteins.
  相似文献   

2.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

3.

Background

In eukaryotes, PPP (p rotein p hosphatase P) family is one of the two known protein phosphatase families specific for Ser and Thr. The role of PPP phosphatases in multiple signaling pathways in eukaryotic cell has been extensively studied. Unlike eukaryotic PPP phosphatases, bacterial members of the family have broad substrate specificity or may even be Tyr-specific. Moreover, one group of bacterial PPPs are diadenosine tetraphosphatases, indicating that bacterial PPP phosphatases may not necessarily function as protein phosphatases.

Results

We describe the presence in eukaryotes of three groups of expressed genes encoding "non-conventional" phosphatases of the PPP family. These enzymes are more closely related to bacterial PPP phosphatases than to the known eukaryotic members of the family. One group, found exclusively in land plants, is most closely related to PPP phosphatases from some α-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. This group is therefore termed Rhi zobiales / Rh odobacterales / Rh odospirillaceae-l ike ph osphatases, or Rhilphs. Phosphatases of the other group are found in Viridiplantae, Rhodophyta, Trypanosomatidae, Plasmodium and some fungi. They are structurally related to phosphatases from psychrophilic bacteria Shewanella and Colwellia, and are termed She wanella-l ike ph osphatases, or Shelphs. Phosphatases of the third group are distantly related to ApaH, bacterial diadenosine tetraphosphatases, and are termed A paH-l ike ph osphatases, or Alphs. Patchy distribution of Alphs in animals, plants, fungi, diatoms and kinetoplasts suggests that these phosphatases were present in the common ancestor of eukaryotes but were independently lost in many lineages. Rhilphs, Shelphs and Alphs form PPP clades, as divergent from "conventional" eukaryotic PPP phosphatases as they are from each other and from major bacterial clades. In addition, comparison of primary structures revealed a previously unrecognised (I/L/V)D(S/T)G motif, conserved in all bacterial and "bacterial-like" eukaryotic PPPs, but not in "conventional" eukaryotic and archaeal PPPs.

Conclusions

Our findings demonstrate that many eukaryotes possess diverse "bacterial-like" PPP phosphatases, the enzymatic characteristics, physiological roles and precise evolutionary history of which have yet to be determined.
  相似文献   

4.

Introduction

Adoption of automatic profiling tools for 1H-NMR-based metabolomic studies still lags behind other approaches in the absence of the flexibility and interactivity necessary to adapt to the properties of study data sets of complex matrices.

Objectives

To provide an open source tool that fully integrates these needs and enables the reproducibility of the profiling process.

Methods

rDolphin incorporates novel techniques to optimize exploratory analysis, metabolite identification, and validation of profiling output quality.

Results

The information and quality achieved in two public datasets of complex matrices are maximized.

Conclusion

rDolphin is an open-source R package (http://github.com/danielcanueto/rDolphin) able to provide the best balance between accuracy, reproducibility and ease of use.
  相似文献   

5.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

6.

Introduction

Exercise-associated metabolism in type 1 diabetes (T1D) remains under-studied due to the complex interplay between exogenous insulin, counter-regulatory hormones and insulin-sensitivity.

Objective

To identify the metabolic differences induced by two exercise modalities in T1D using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS) based metabolomics.

Methods

Twelve T1D adults performed intermittent high-intensity (IHE) and continuous-moderate-intensity (CONT) exercise. Serum samples were analysed by UHPLC–HRMS.

Results

Metabolic profiling of IHE and CONT highlighted exercise-induced changes in purine and acylcarnitine metabolism.

Conclusion

IHE may increase beta-oxidation through higher ATP-turnover. UHPLC–HRMS based metabolomics as a data-driven approach without an a priori hypothesis may help uncover distinctive metabolic effects during exercise in T1D.Clinical trial registration number is www.clinicaltrials.gov: NCT02068638.
  相似文献   

7.

Introduction

A major bottleneck in metabolomic studies is metabolite identification from accurate mass spectrometric data. Metabolite x17299 was identified in plasma as an unknown in a metabolomic study using a compound-centric approach where the associated ion features of the compound were used to determine the true molecular mass.

Objectives

The aim of this work is to elucidate the chemical structure of x17299, a new compound by de novo interpretation of mass spectrometric data.

Methods

An Orbitrap Elite mass spectrometer was used for acquisition of mass spectra up to MS4 at high resolution. Synthetic standards of N,N,N-trimethyl-l-alanyl-l-proline betaine (l,l-TMAP), a diastereomer, and an enantiomer were chemically prepared.

Results

The planar structure of x17299 was successfully proposed by de novo mechanistic interpretation of mass spectrometric data without any laborious purification and nuclear magnetic resonance spectroscopic analysis. The proposed structure was verified by deuterium exchanged mass spectrometric analysis and confirmed by comparison to a synthetic standard. Relative configuration of x17299 was determined by direct chromatographic comparison to a pair of synthetic diastereomers. Absolute configuration was assigned after derivatization of x17299 with a chiral auxiliary group followed by its chromatographic comparison to a pair of synthetic standards.

Conclusion

The chemical structure of metabolite x17299 was determined to be l,l-TMAP.
  相似文献   

8.
9.

Introduction

The ability of urinary metabolomics to detect meaningful, tissue-specific, biological effects (i.e., toxicity, disease) is compounded by high background variability. We hypothesize that sensitivity can be enhanced by imposing a tissue-targeted metabolic stressor.

Objective

We tested whether the sensitivity of metabolomics to assess kidney function is improved under the diuretic stress of furosemide.

Methods

To mildly compromise kidney, rats were given a sub-acute dose of d-serine. Then at 24 h postdose, we administered vehicle solution (control) or the diuretic drug, furosemide, and conducted NMR-based urinary metabolomics.

Results

Principal Components and OPLS discriminant analyses showed no effects on urinary profiles in rats receiving d-serine alone. However, the effects of d-serine were observable under furosemide-induced stress, as urinary profiles classified separately from rats receiving furosemide alone or vehicle-treated controls (p?<?0.001). Furthermore, this profile was uniquely different from a co-treatment effect observed following co-administration of d-serine?+?furosemide. We identified 24 metabolites to classify the effects of furosemide in normal rats vs. d-serine-compromised rats. Most notably, a furosemide-induced increase in urinary excretion of α-ketoglutarate, creatinine, trigonelline, and tryptophan in control rats, was significantly reduced in d-serine exposed rats (p?<?0.05). Interestingly, increased tryptophan metabolism has been shown to correlate with the severity of kidney transplant failure and chronic kidney disease.

Conclusions

We attribute these effects to differences in kidney function, which were only detectable under the stress imposed by furosemide. This technique may extend to other organ systems and may provide improved sensitivity for assessment of tissue function or early detection of disease.
  相似文献   

10.

Introduction

Swine dysentery caused by Brachyspira hyodysenteriae is a production limiting disease in pig farming. Currently antimicrobial therapy is the only treatment and control method available.

Objective

The aim of this study was to characterize the metabolic response of porcine colon explants to infection by B. hyodysenteriae.

Methods

Porcine colon explants exposed to B. hyodysenteriae were analyzed for histopathological, metabolic and pro-inflammatory gene expression changes.

Results

Significant epithelial necrosis, increased levels of l-citrulline and IL-1α were observed on explants infected with B. hyodysenteriae.

Conclusions

The spirochete induces necrosis in vitro likely through an inflammatory process mediated by IL-1α and NO.
  相似文献   

11.

Objective

Develop and validate particular, concrete, and abstract yet plausible in silico mechanistic explanations for large intra- and interindividual variability observed for eleven bioequivalence study participants. Do so in the face of considerable uncertainty about mechanisms.

Methods

We constructed an object-oriented, discrete event model called subject (we use small caps to distinguish computational objects from their biological counterparts). It maps abstractly to a dissolution test system and study subject to whom product was administered orally. A subject comprises four interconnected grid spaces and event mechanisms that map to different physiological features and processes. Drugs move within and between spaces. We followed an established, Iterative Refinement Protocol. Individualized mechanisms were made sufficiently complicated to achieve prespecified Similarity Criteria, but no more so. Within subjects, the dissolution space is linked to both a product-subject Interaction Space and the GI tract. The GI tract and Interaction Space connect to plasma, from which drug is eliminated.

Results

We discovered parameterizations that enabled the eleven subject simulation results to achieve the most stringent Similarity Criteria. Simulated profiles closely resembled those with normal, odd, and double peaks. We observed important subject-by-formulation interactions within subjects.

Conclusion

We hypothesize that there were interactions within bioequivalence study participants corresponding to the subject-by-formulation interactions within subjects. Further progress requires methods to transition currently abstract subject mechanisms iteratively and parsimoniously to be more physiologically realistic. As that objective is achieved, the approach presented is expected to become beneficial to drug development (e.g., controlled release) and to a reduction in the number of subjects needed per study plus faster regulatory review.
  相似文献   

12.

Objective

To develop a new and efficient biocatalytic synthesis method of imidazole-4-acetic acid (IAA) from l-histidine (l-His).

Results

l-His was converted to imidazole-4-pyruvic acid (IPA) by an Escherichia coli whole-cell biocatalyst expressing membrane-bound l-amino acid deaminase (ml-AAD) from Proteus vulgaris firstly. The obtained IPA was subsequently decarboxylated to IAA under the action of H2O2. Under optimum conditions, 34.97 mM IAA can be produced from 50 mM l-His, with a yield of 69.9%.

Conclusions

Compared to the traditional chemical synthesis, this biocatalytic method for IAA production is not only environmentally friendly, but also more cost effective, thus being promising for industrial IAA production.
  相似文献   

13.

Background

Superpositioning is an important problem in structural biology. Determining an optimal superposition requires a one-to-one correspondence between the atoms of two proteins structures. However, in practice, some atoms are missing from their original structures. Current superposition implementations address the missing data crudely by ignoring such atoms from their structures.

Results

In this paper, we propose an effective method for superpositioning pairwise and multiple structures without sequence alignment. It is a two-stage procedure including data reduction and data registration.

Conclusions

Numerical experiments demonstrated that our method is effective and efficient. The code package of protein structure superposition method for addressing the cases with missing data is implemented by MATLAB, and it is freely available from: http://sourceforge.net/projects/pssm123/files/?source=navbar
  相似文献   

14.

Introduction

Non-traumatic osteonecrosis of the femoral head (NTONFH) is a progressive disease, always leading to hip dysfunction if no early intervention was applied. The difficulty for early diagnosis of NTONFH is due to the slight symptoms at early stages as well as the high cost for screening patients by using magnetic resonance imaging.

Objective

The aim was to detect biomarkers of early-stage NTONFH, which was beneficial to the exploration of a cost-effective approach for the early diagnose of the disease.

Methods

Metabolomic approaches were employed in this study to detect biomarkers of early-stage NTONFH (22 patients, 23 controls), based on the platform of ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and the uses of multivariate statistic analysis, putative metabolite identification, metabolic pathway analysis and biomarker analysis.

Results

In total, 33 serum metabolites were found altered between NTONFH group and control group. In addition, glycerophospholipid metabolism and pyruvate metabolism were highly associated with the disease.

Conclusion

The combination of LysoPC (18:3), l-tyrosine and l-leucine proved to have a high diagnostic value for early-stage NTONFH. Our findings may contribute to the protocol for early diagnosis of NTONFH and further elucidate the underlying mechanisms of the disease.
  相似文献   

15.

Background

Complex diseases, such as Type 2 Diabetes, are generally caused by multiple factors, which hamper effective drug discovery. To combat these diseases, combination regimens or combination drugs provide an alternative way, and are becoming the standard of treatment for complex diseases. However, most of existing combination drugs are developed based on clinical experience or test-and-trial strategy, which are not only time consuming but also expensive.

Results

In this paper, we presented a novel network-based systems biology approach to identify effective drug combinations by exploiting high throughput data. We assumed that a subnetwork or pathway will be affected in the networked cellular system after a drug is administrated. Therefore, the affected subnetwork can be used to assess the drug's overall effect, and thereby help to identify effective drug combinations by comparing the subnetworks affected by individual drugs with that by the combination drug. In this work, we first constructed a molecular interaction network by integrating protein interactions, protein-DNA interactions, and signaling pathways. A new model was then developed to detect subnetworks affected by drugs. Furthermore, we proposed a new score to evaluate the overall effect of one drug by taking into account both efficacy and side-effects. As a pilot study we applied the proposed method to identify effective combinations of drugs used to treat Type 2 Diabetes. Our method detected the combination of Metformin and Rosiglitazone, which is actually Avandamet, a drug that has been successfully used to treat Type 2 Diabetes.

Conclusions

The results on real biological data demonstrate the effectiveness and efficiency of the proposed method, which can not only detect effective cocktail combination of drugs in an accurate manner but also significantly reduce expensive and tedious trial-and-error experiments.
  相似文献   

16.

Background

Finding potential drug targets is a crucial step in drug discovery and development. Recently, resources such as the Library of Integrated Network-Based Cellular Signatures (LINCS) L1000 database provide gene expression profiles induced by various chemical and genetic perturbations and thereby make it possible to analyze the relationship between compounds and gene targets at a genome-wide scale. Current approaches for comparing the expression profiles are based on pairwise connectivity mapping analysis. However, this method makes the simple assumption that the effect of a drug treatment is similar to knocking down its single target gene. Since many compounds can bind multiple targets, the pairwise mapping ignores the combined effects of multiple targets, and therefore fails to detect many potential targets of the compounds.

Results

We propose an algorithm to find sets of gene knock-downs that induce gene expression changes similar to a drug treatment. Assuming that the effects of gene knock-downs are additive, we propose a novel bipartite block-wise sparse multi-task learning model with super-graph structure (BBSS-MTL) for multi-target drug repositioning that overcomes the restrictive assumptions of connectivity mapping analysis.

Conclusions

The proposed method BBSS-MTL is more accurate for predicting potential drug targets than the simple pairwise connectivity mapping analysis on five datasets generated from different cancer cell lines.

Availability

The code can be obtained at http://gr.xjtu.edu.cn/web/liminli/codes.
  相似文献   

17.

Background

Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors.

Methods

In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families.

Results

We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database.

Conclusions

Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement.
  相似文献   

18.

Background

Studies that ascertain families containing multiple relatives affected by disease can be useful for identification of causal, rare variants from next-generation sequencing data.

Results

We present the R package SimRVPedigree, which allows researchers to simulate pedigrees ascertained on the basis of multiple, affected relatives. By incorporating the ascertainment process in the simulation, SimRVPedigree allows researchers to better understand the within-family patterns of relationship amongst affected individuals and ages of disease onset.

Conclusions

Through simulation, we show that affected members of a family segregating a rare disease variant tend to be more numerous and cluster in relationships more closely than those for sporadic disease. We also show that the family ascertainment process can lead to apparent anticipation in the age of onset. Finally, we use simulation to gain insight into the limit on the proportion of ascertained families segregating a causal variant. SimRVPedigree should be useful to investigators seeking insight into the family-based study design through simulation.
  相似文献   

19.
20.

Background

For treating a complex disease such as cancer, we need effective means to control the biological network that underlies the disease. However, biological networks are typically robust to external perturbations, making it difficult to beneficially alter the network dynamics by controlling a single target. In fact, multi-target therapeutics is often more effective compared to monotherapies, and combinatory drugs are commonly used these days for treating various diseases. A practical challenge in combination therapy is that the number of possible drug combinations increases exponentially, which makes the prediction of the optimal drug combination a difficult combinatorial optimization problem. Recently, a stochastic optimization algorithm called the Gur Game algorithm was proposed for drug optimization, which was shown to be very efficient in finding potent drug combinations.

Results

In this paper, we propose a novel stochastic optimization algorithm that can be used for effective optimization of combinatory drugs. The proposed algorithm analyzes how the concentration change of a specific drug affects the overall drug response, thereby making an informed guess on how the concentration should be updated to improve the drug response. We evaluated the performance of the proposed algorithm based on various drug response functions, and compared it with the Gur Game algorithm.

Conclusions

Numerical experiments clearly show that the proposed algorithm significantly outperforms the original Gur Game algorithm, in terms of reliability and efficiency. This enhanced optimization algorithm can provide an effective framework for identifying potent drug combinations that lead to optimal drug response.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号