首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Peroxisome proliferator‐activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time‐ and concentration‐dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time‐ and concentration‐dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In the nucleus, chromatin is folded into hierarchical architecture that is tightly linked to various nuclear functions. However, the underlying molecular mechanisms that confer these architectures remain incompletely understood. Here, we investigated the functional roles of H3 lysine 9 dimethylation (H3K9me2), one of the abundant histone modifications, in three-dimensional (3D) genome organization. Unlike in mouse embryonic stem cells, inhibition of methyltransferases G9a and GLP in differentiated cells eliminated H3K9me2 predominantly at A-type (active) genomic compartments, and the level of residual H3K9me2 modifications was strongly associated with B-type (inactive) genomic compartments. Furthermore, chemical inhibition of G9a/GLP in mouse hepatocytes led to decreased chromatin-nuclear lamina interactions mainly at G9a/GLP-sensitive regions, increased degree of genomic compartmentalization, and up-regulation of hundreds of genes that were associated with alterations of the 3D chromatin. Collectively, our data demonstrated essential roles of H3K9me2 in 3D genome organization.  相似文献   

5.
组蛋白赖氨酸甲基化在表观遗传调控中起着关键作用。组蛋白甲基转移酶G9a(又称作常染色质组蛋白赖氨酸N-甲基转移酶2(euchromatic histone-lysine N-methyltransferase 2,EHMT2))含经典的SET结构域,是常染色质主要的甲基转移酶之一,可以甲基化组蛋白H3K9、H3K27和H1bK26等。此外,G9a也可以直接甲基化一些非组蛋白,并与DNA甲基化密切相关。G9a功能紊乱可以导致胚胎发育异常、免疫系统及神经系统发育障碍、甚至癌症的发生发展。  相似文献   

6.
It has been previously shown that PPARγ ligands induce apoptotic cell death in a variety of cancer cells. Given the evidence that these ligands have a receptor-independent function, we further examined the specific role of PPARγ activation in this biological process. Surprisingly, we failed to demonstrate that MDA-MB-231 breast cancer cells undergo apoptosis when treated with sub-saturation doses of troglitazone and rosiglitazone, which are synthetic PPARγ ligands. Acridine orange (AO) staining showed acidic vesicular formation within ligand-treated cells, indicative of autophagic activity. This was confirmed by autophagosome formation as indicated by redistribution of LC3, an autophagy-specific protein, and the appearance of double-membrane autophagic vacuoles by electron microscopy following exposure to ligand. To determine the mechanism by which PPARγ induces autophagy, we transduced primary mammary epithelial cells with a constitutively active mutant of PPARγ and screened gene expression associated with PPARγ activation by genome-wide array analysis. HIF1α and BNIP3 were among 42 genes up-regulated by active PPARγ. Activation of PPARγ induced HIF1α and BNIP3 protein and mRNA abundance. HIF1α knockdown by shRNA abolished the autophagosome formation induced by PPARγ activation. In summary, our data shows a specific induction of autophagy by PPARγ activation in breast cancer cells providing an understanding of distinct roles of PPARγ in tumorigenesis.  相似文献   

7.
To study the dynamics of 5-methylcytosine and 5-hydroxymethylcytosine in zygotes, the parental origin of the pronuclei needs to be determined. To this end the use of the asymmetric distribution of histone modifications in pronuclei is becoming more popular. Here, we demonstrated that histone 3 lysine 27 di-tri-methylation shows a stable pattern being present in the maternal but not in the paternal pronucleus of bovine zygotes, even in late stages of pronuclear development. In contrast, the pattern of histone 3 lysine 9 tri-methylation is very variable, and therefore cannot be used to reliably determine the parental origin of bovine pronuclei.  相似文献   

8.
9.
10.
11.
12.
Context: Histone modifications regulate gene expression; dysregulation has been linked with cardiovascular diseases. Associations between histone modification levels and blood pressure in humans are unclear.

Objective: We examine the relationship between global histone concentrations and various markers of blood pressure.

Materials and methods: Using the Beijing Truck Driver Air Pollution Study, we investigated global peripheral white blood cell histone modifications (H3K9ac, H3K9me3, H3K27me3, and H3K36me3) associations with pre- and post-work measurements of systolic (SBP) and diastolic (DBP) blood pressure, mean arterial pressure (MAP), and pulse pressure (PP) using multivariable mixed-effect models.

Results: H3K9ac was negatively associated with pre-work SBP and MAP; H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP; and H3K27me3 was negatively associated with pre-work SBP. Among office workers, H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP. Among truck drivers, H3K9ac and H3K27me were negatively associated with pre-work SBP, and H3K27me3 was positively associated with post-work PP.

Discussion and conclusion: Epigenome-wide H3K9ac, H3K9me3, and H3K27me3 were negatively associated with multiple pre-work blood pressure measures. These associations substantially changed during the day, suggesting an influence of daily activities. Blood-based histone modification biomarkers are potential candidates for studies requiring estimations of morning/pre-work blood pressure.  相似文献   


13.
14.
Achilles tendon injury is one of the challenges of sports medicine, the aetiology of which remains unknown. For a long time, estrogen receptor β (ERβ) has been known as a regulating factor of the metabolism in many connective tissues, such as bone, muscle and cartilage, but little is known about its role in tendon. Recent studies have implicated ERβ as involved in the process of tendon healing. Tendon‐derived stem cells (TDSCs) are getting more and more attention in tendon physiological and pathological process. In this study, we investigated how ERβ played a role in Achilles tendon healing. Achilles tendon injury model was established to analyse how ERβ affected on healing process in vivo. Cell proliferation assay, Western blots, qRT‐PCR and immunocytochemistry were performed to investigate the effect of ERβ on TDSCs. Here, we showed that ERβ deletion in mice resulted in inferior gross appearance, histological scores and, most importantly, increased accumulation of adipocytes during the early tendon healing which involved activation of peroxisome proliferator‐activated receptor γ (PPARγ) signalling. Furthermore, in vitro results of ours confirmed that the abnormity might be the result of abnormal TDSC adipogenic differentiation which could be partially reversed by the treatment of ERβ agonist LY3201. These data revealed a role of ERβ in Achilles tendon healing for the first time, thereby providing a new target for clinical treatment of Achilles tendon injury.  相似文献   

15.
组蛋白变体在基因表达等基本细胞过程中发挥重要调节功能。人类有5种H3变体,分别为H3.1、 H3.2、H3.3、着丝粒特异性CENP-A和睾丸特异性H3t。人H3.3有H3F3A和H3F3B两个基因编码。采用DNA全基因组测序的方法在儿童高级别胶质瘤如恶性胶质瘤(GBM)和弥漫性内在脑桥胶质瘤(DIPG)鉴定出高频的H3F3A突变。超过70%DIPG和30%GBM携带H3.3 K27M氨基酸错义突变(27位赖氨酸被甲硫氨酸代替)。H3.3 K27M通过与组蛋白H3K27甲基转移酶EZH2亚基相互作用而抑制多梳抑制复合物2(PRC2)活性并全面减少H3K27me3含量。因此H3.3 K27M突变重塑了表观修饰状态和基因表达模式,从而驱动肿瘤发生。K27M突变可作为分子标志物以更好区分儿童胶质瘤亚型,还可作为特异、敏感的预后标志物。通过抑制组蛋白去甲基化酶如JMJD3活性而增加H3K27甲基化可作为K27M突变胶质瘤治疗的有效策略。本文综述了组蛋白变体H3.3 K27M在胶质瘤中的突变模式、分子机制和临床应用。  相似文献   

16.
17.
18.
19.
Mesenchymal stem cells (MSCs) provide us an excellent cellular model to uncover the molecular mechanisms underlying adipogenic differentiation of adult stem cells. PPARγ had been considered as an important molecular marker of cells undergoing adipogenic differentiation. Here, we demonstrated that expression and phosphorylation of PPARγ could be found in bone marrow–derived MSCs cultured in expansion medium without any adipogenic additives (dexamethasone, IBMX, insulin or indomethacin). Then, PPARγ was dephosphorylated in MSCs during the process of adipogenic differentiation. We then found that inhibition of MEK activation by specific inhibitor (PD98059) counteracted the PPARγ expression and phosphorylation. However, expression and phosphorylation of PPARγ did not present in MSCs cultured in medium with lower serum concentration. When these MSCs differentiated into adipocytes, no phosphorylation could be detected to accompany the expression of PPARγ. Moreover, exposure of MSCs to higher concentration of serum induced stronger PPARγ expression, and subsequently enhanced their adipogenesis. These data suggested that activation of the MEK/ERK signalling pathway by high serum concentration promoted PPARγ expression and phosphorylation, and subsequently enhanced adipogenic differentiation of MSCs.  相似文献   

20.
Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)–G9a–H3K9me2 axis in fatty acid–induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid–treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid–treated cells. Inhibition of mTORC1 in fatty acid–treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid–treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid–treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1–G9a–H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号