首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.  相似文献   

2.
3.
4.
This review concisely recapitulates the different existing modes of stent‐mediated gene/drug delivery, their considerable advancement in clinical trials and a rationale for other merging new technologies such as nanotechnology and microRNA‐based therapeutics, in addition to addressing the limitations in each of these perpetual stent platforms. Over the past decade, stent‐mediated gene/drug delivery has materialized as a hopeful alternative for cardiovascular disease and cancer in contrast to routine conventional treatment modalities. Regardless of the phenomenal recent developments achieved by coronary interventions and cancer therapies that employ gene and drug‐eluting stents, practical hurdles still remain a challenge. The present review highlights the limitations that each of the existing stent‐based gene/drug delivery system encompasses and therefore provides a vision for the future with respect to discovering an ideal stent therapeutic platform that would circumvent all the practical hurdles witnessed with the existing technology. Further study of the improvisation of next‐generation drug‐eluting stents has helped to overcome the issue of restenosis to some extent. However, current stent formulations fall short of the anticipated clinically meaningful outcomes and there is an explicit need for more randomized trials aiming to further evaluate stent platforms in favour of enhanced safety and clinical value. Gene‐eluting stents may hold promise in contributing new ideas for stent‐based prevention of in‐stent restenosis through genetic interventions by capitalizing on a wide variety of molecular targets. Therefore, the central consideration directs us toward finding an ideal stent therapeutic platform that would tackle all of the gaps in the existing technology.  相似文献   

5.
6.
Nicotinic acetylcholine receptors are ligand‐gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain's reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use.  相似文献   

7.
8.
9.
Pre‐clinical testing of drug candidates in animal models is expensive, time‐consuming, and often fails to predict drug effects in humans. Industry and academia alike are working to build human‐based in vitro test beds and advanced high throughput screening systems to improve the translation of preclinical results to human drug trials. Human neurons derived from induced pluripotent stems cells (hiPSCs) are readily available for use within these test‐beds and high throughput screens, but there remains a need to robustly evaluate cellular behavior prior to their incorporation in such systems. This study reports on the characterization of one source of commercially available hiPSC‐derived neurons, iCell® Neurons, for their long‐term viability and functional performance to assess their suitability for integration within advanced in vitro platforms. The purity, morphology, survival, identity, and functional maturation of the cells utilizing different culture substrates and medium combinations were evaluated over 28 days in vitro (DIV). Patch‐clamp electrophysiological data demonstrated increased capacity for repetitive firing of action potentials across all culture conditions. Significant differences in cellular maturity, morphology, and functional performance were observed in the different conditions, highlighting the importance of evaluating different surface types and growth medium compositions for application in specific in vitro protocols. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1613–1622, 2015  相似文献   

10.
2‐Methoxyestradiol (ME), one of the most widely investigated A‐ring‐modified metabolites of estrone, exerts significant anticancer activity on numerous cancer cell lines. Its pharmacological actions, including cell cycle arrest, microtubule disruption and pro‐apoptotic activity, have already been described in detail. The currently tested d ‐ring‐modified analogue of estrone, d ‐homoestrone, selectively inhibits cervical cancer cell proliferation and induces a G2/M phase cell cycle blockade, resulting in the development of apoptosis. The question arose of whether the difference in the chemical structures of these analogues can influence the mechanism of anticancer action. The aim of the present study was therefore to elucidate the molecular contributors of intracellular processes induced by d ‐homoestrone in HeLa cells. Apoptosis triggered by d ‐homoestrone develops through activation of the intrinsic pathway, as demonstrated by determination of the activities of caspase‐8 and ‐9. It was revealed that d ‐homoestrone‐treated HeLa cells are not able to enter mitosis because the cyclin‐dependent kinase 1‐cyclin B complex loses its activity, resulting in the decreased inactivation of stathmin and a concomitant disturbance of microtubule formation. However, unlike 2‐ME, d ‐homoestrone does not exert a direct effect on tubulin polymerization. These results led to the conclusion that the d ‐homoestrone‐triggered intracellular processes resulting in a cell cycle arrest and apoptosis in HeLa cells differ from those in the case of 2‐ME. This may be regarded as an alternative mechanism of action among steroidal anticancer compounds.  相似文献   

11.
12.
Microfluidics and photonics come together to form a field commonly referred to as ‘optofluidics’. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We constructed the significant low‐expression P‐glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high‐expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1‐inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle‐mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal‐induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV‐1)‐infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro‐mitochondrial or anti‐apoptotic strategies as in vitro cell platforms to deal with HIV‐infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt‐PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial‐nuclear encoded subunits II–IV of cytochrome‐c‐oxidase (COXII‐COXIV), respectively, as well as mitochondrial apoptotic events [voltage‐dependent‐anion‐channel‐1(VDAC‐1)‐content and caspase‐9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1‐assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC‐1 and caspase‐9 content were sharply decreased in both chronic HIV‐1‐infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV‐chronicity, to test novel therapeutic options or to study HIV reservoirs.  相似文献   

15.
(1R)‐Normetanephrine is the natural stereoisomeric substrate for sulfotransferase 1A3 (SULT1A3)‐catalyzed sulfonation. Nothing appears known on the enantioselectivity of the reaction despite its potential significance in the metabolism of adrenergic amines and in clinical biochemistry. We confronted the kinetic parameters of the sulfoconjugation of synthetic (1R)‐normetanephrine and (1S)‐normetanephrine by recombinant human SULT1A3 to a docking model of each normetanephrine enantiomer with SULT1A3 and the 3′‐phosphoadenosine‐5′‐phosphosulfate cofactor on the basis of molecular modeling and molecular dynamics simulations of the stability of the complexes. The KM, Vmax, and kcat values for the sulfonation of (1R)‐normetanephrine, (1S)‐normetanephrine, and racemic normetanephrine were similar. In silico models were consistent with these findings as they showed that the binding modes of the two enantiomers were almost identical. In conclusion, SULT1A3 is not substrate‐enantioselective toward normetanephrine, an unexpected finding explainable by a mutual adaptability between the ligands and SULT1A3 through an “induced‐fit model” in the catalytic pocket. Chirality, 25:28‐34, 2012.© 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
Schedule‐induced polydipsia (SIP) is an animal model of compulsive drinking that selects for individual differences and varies across rat strains. The aim of this study was to investigate excessive habit formation by analyzing the SIP licking microstructure among rat strains, and to compare the brain areas activated by SIP in different populations. Wistar, Long Evans and Roman High‐ and Low‐Avoidance rat strains were compared using a cluster analysis of 2 main variables, that is, frequency of licking (percentage of interpellet intervals with drinking episodes) and intensity of licking (mean number of licks per interpellet interval), and were found to exhibit high intensity and frequent licking (compulsive drinkers, CD), low intensity but frequent licking (habitual drinkers, HD), and low intensity and low‐frequency licking (low drinkers, LD). The Wistar strain showed a higher frequency and intensity of licking, and had the largest group of CD rats when compared with the other strains. Regarding the acquisition of SIP, CD rats showed a higher intensity of licking when compared with the HD and LD rats. Moreover, c‐Fos quantification revealed that rats in the CD group showed hyperactivity in the lateral orbitofrontal cortex and basolateral amygdala when compared with the LD group. Analyzing the SIP microstructure could be a valuable tool for understanding the role of excessive habit formation in the development of compulsive drinking and its underpinning neurobiological mechanisms.  相似文献   

18.
Proteins belonging to Bcl‐2 family regulate intrinsic cell death pathway. Although mammalian antiapoptotic Bcl‐2 members interact with multiple proapoptotic proteins, the Caenorhabditis elegans Bcl‐2 homolog CED‐9 is known to have only two proapoptotic partners. The BH3‐motif of proapoptotic proteins bind to the hydrophobic groove of prosurvival proteins formed by the Bcl‐2 helical fold. CED‐9 is also known to interact with CED‐4, a homolog of the human cell death activator Apaf1. We have performed molecular dynamics simulations of CED‐9 in two forms and compared the results with those of mammalian counterparts Bcl‐XL, Bcl‐w, and Bcl‐2. Our studies demonstrate that the region forming the hydrophobic cleft is more flexible compared with the CED‐4‐binding region, and this is generally true for all antiapoptotic Bcl‐2 proteins studied. CED‐9 is the most stable protein during simulations and its hydrophobic pocket is relatively rigid explaining the absence of functional redundancy in CED‐9. The BH3‐binding region of Bcl‐2 is less flexible among the mammalian proteins and this lends support to the studies that Bcl‐2 binds to less number of BH3 peptides with high affinity. The C‐terminal helix of CED‐9 lost its helical character because of a large number of charged residues. We speculate that this region probably plays a role in intracellular localization of CED‐9. The BH4‐motif accessibility in CED‐9 and Bcl‐w is controlled by the loop connecting the first two helices. Although CED‐9 adopts the same Bcl‐2 fold, our studies highlight important differences in the dynamic behavior of CED‐9 and mammalian antiapoptotic homologs. Proteins 2014; 82:1035–1047. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号