首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A protein family has similar and diverse functions locally conserved. An aligned pattern cluster (APC) can reflect the conserved functionality. Discovering aligned residue associations (ARAs) in APCs can reveal subtle inner working characteristics of conserved regions of protein families. However, ARAs corresponding to different functionalities/subgroups/classes could be entangled because of subtle multiple entwined factors.

Methods

To discover and disentangle patterns from mixed-mode datasets, such as APCs when the residues are replaced by their fundamental biochemical properties list, this paper presents a novel method, Extended Aligned Residual Association Discovery and Disentanglement (E-ARADD). E-ARADD discretizes the numerical dataset to transform the mixed-mode dataset into an event-value dataset, constructs an ARA Frequency Matrix and then converts it into an adjusted Statistical Residual (SR) Vector Space (SRV) capturing statistical deviation from randomness. By applying Principal Component (PC) Decomposition on SRV, PCs ranked by their variance are obtained. Finally, the disentangled ARAs are discovered when the projections on a PC is re-projected to a vector space with the same basis vectors of SRV.

Results

Experiments on synthetic, cytochrome c and class A scavenger data have shown that E-ARADD can a) disentangle the entwined ARAs in APCs (with residues or biochemical properties), b) reveal subtle AR clusters relating to classes, subtle subgroups or specific functionalities.

Conclusions

E-ARADD can discover and disentangle ARs and ARAs entangled in functionality and location of protein families to reveal functional subgroups and subgroup characteristics of biological conserved regions. Experimental results on synthetic data provides the proof-of-concept validation on the successful disentanglement that reveals class-associated ARAs with or without class labels as input. Experiments on cytochrome c data proved the efficacy of E-ARADD in handing both types of residue data. Our novel methodology is not only able to discover and disentangle ARs and ARAs in specific statistical/functional (PCs and RSRVs) spaces, but also their locations in the protein family functional domains. The success of E-ARADD shows its great potential to proteomic research, drug discovery and precision and personalized genetic medicine.
  相似文献   

2.

Background

The heme-protein interactions are essential for various biological processes such as electron transfer, catalysis, signal transduction and the control of gene expression. The knowledge of heme binding residues can provide crucial clues to understand these activities and aid in functional annotation, however, insufficient work has been done on the research of heme binding residues from protein sequence information.

Methods

We propose a sequence-based approach for accurate prediction of heme binding residues by a novel integrative sequence profile coupling position specific scoring matrices with heme specific physicochemical properties. In order to select the informative physicochemical properties, we design an intuitive feature selection scheme by combining a greedy strategy with correlation analysis.

Results

Our integrative sequence profile approach for prediction of heme binding residues outperforms the conventional methods using amino acid and evolutionary information on the 5-fold cross validation and the independent tests.

Conclusions

The novel feature of an integrative sequence profile achieves good performance using a reduced set of feature vector elements.
  相似文献   

3.

Background

The characterization of protein–peptide interactions is a challenge for computational molecular docking. Protein–peptide docking tools face at least two major difficulties: (1) efficient sampling of large-scale conformational changes induced by binding and (2) selection of the best models from a large set of predicted structures. In this paper, we merge an efficient sampling technique with external information about side-chain contacts to sample and select the best possible models.

Methods

In this paper we test a new protocol that uses information about side-chain contacts in CABS-dock protein–peptide docking. As shown in our recent studies, CABS-dock enables efficient modeling of large-scale conformational changes without knowledge about the binding site. However, the resulting set of binding sites and poses is in many cases highly diverse and difficult to score.

Results

As we demonstrate here, information about a single side-chain contact can significantly improve the prediction accuracy. Importantly, the imposed constraints for side-chain contacts are quite soft. Therefore, the developed protocol does not require precise contact information and ensures large-scale peptide flexibility in the broad contact area.

Conclusions

The demonstrated protocol provides the extension of the CABS-dock method that can be practically used in the structure prediction of protein–peptide complexes guided by the knowledge of the binding interface.
  相似文献   

4.

Background

Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work.

Methods

Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation.

Results

The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples.

Conclusions

Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
  相似文献   

5.

Background

P-glycoprotein (P-gp) is a 170-kDa membrane protein. It provides a barrier function and help to excrete toxins from the body as a transporter. Some bioflavonoids have been shown to block P-gp activity.

Objective

To evaluate the important amino acid residues within nucleotide binding domain 1 (NBD1) of P-gp that play a key role in molecular interactions with flavonoids using structure-based pharmacophore model.

Methods

In the molecular docking with NBD1 models, a putative binding site of flavonoids was proposed and compared with the site for ATP. The binding modes for ligands were achieved using LigandScout to generate the P-gp–flavonoid pharmacophore models.

Results

The binding pocket for flavonoids was investigated and found these inhibitors compete with the ATP for binding site in NBD1 including the NBD1 amino acid residues identified by the in silico techniques to be involved in the hydrogen bonding and van der Waals (hydrophobic) interactions with flavonoids.

Conclusion

These flavonoids occupy with the same binding site of ATP in NBD1 proffering that they may act as an ATP competitive inhibitor.
  相似文献   

6.

Background

Analysis of preferred binding regions of a ligand on a protein is important for detecting cryptic binding pockets and improving the ligand selectivity.

Result

The enhanced sampling approach TAMD has been adapted to allow a ligand to unbind from its native binding site and explore the protein surface. This so-called re-TAMD procedure was then used to explore the interaction between the N terminal peptide of histone H3 and the YEATS domain. Depending on the length of the peptide, several regions of the protein surface were explored. The peptide conformations sampled during the re-TAMD correspond to peptide free diffusion around the protein surface.

Conclusions

The re-TAMD approach permitted to get information on the relative influence of different regions of the N terminal peptide of H3 on the interaction between H3 and YEATS.
  相似文献   

7.

Background

Guanonine-protein (G-protein) is known as molecular switches inside cells, and is very important in signals transmission from outside to inside cell. Especially in transport protein, most of G-proteins play an important role in membrane trafficking; necessary for transferring proteins and other molecules to a variety of destinations outside and inside of the cell. The function of membrane trafficking is controlled by G-proteins via Guanosine triphosphate (GTP) binding sites. The GTP binding sites active G-proteins initiated to membrane vesicles by interacting with specific effector proteins. Without the interaction from GTP binding sites, G-proteins could not be active in membrane trafficking and consequently cause many diseases, i.e., cancer, Parkinson… Thus it is very important to identify GTP binding sites in membrane trafficking, in particular, and in transport protein, in general.

Results

We developed the proposed model with a cross-validation and examined with an independent dataset. We achieved an accuracy of 95.6% for evaluating with cross-validation and 98.7% for examining the performance with the independent data set. For newly discovered transport protein sequences, our approach performed remarkably better than similar methods such as GTPBinder, NsitePred and TargetSOS. Moreover, a friendly web server was developed for identifying GTP binding sites in transport proteins available for all users.

Conclusions

We approached a computational technique using PSSM profiles and SAAPs for identifying GTP binding residues in transport proteins. When we included SAAPs into PSSM profiles, the predictive performance achieved a significant improvement in all measurement metrics. Furthermore, the proposed method could be a power tool for determining new proteins that belongs into GTP binding sites in transport proteins and can provide useful information for biologists.
  相似文献   

8.

Background

Most of hydrophilic and hydrophobic residues are thought to be exposed and buried in proteins, respectively. In contrast to the majority of the existing studies on protein folding characteristics using protein structures, in this study, our aim was to design predictors for estimating relative solvent accessibility (RSA) of amino acid residues to discover protein folding characteristics from sequences.

Methods

The proposed 20 real-value RSA predictors were designed on the basis of the support vector regression method with a set of informative physicochemical properties (PCPs) obtained by means of an optimal feature selection algorithm. Then, molecular dynamics simulations were performed for validating the knowledge discovered by analysis of the selected PCPs.

Results

The RSA predictors had the mean absolute error of 14.11% and a correlation coefficient of 0.69, better than the existing predictors. The hydrophilic-residue predictors preferred PCPs of buried amino acid residues to PCPs of exposed ones as prediction features. A hydrophobic spine composed of exposed hydrophobic residues of an α-helix was discovered by analyzing the PCPs of RSA predictors corresponding to hydrophobic residues. For example, the results of a molecular dynamics simulation of wild-type sequences and their mutants showed that proteins 1MOF and 2WRP_H16I (Protein Data Bank IDs), which have a perfectly hydrophobic spine, have more stable structures than 1MOF_I54D and 2WRP do (which do not have a perfectly hydrophobic spine).

Conclusions

We identified informative PCPs to design high-performance RSA predictors and to analyze these PCPs for identification of novel protein folding characteristics. A hydrophobic spine in a protein can help to stabilize exposed α-helices.
  相似文献   

9.

Background

Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology.

Methods

We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching.

Results

We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix.

Conclusions

The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.
  相似文献   

10.
11.

Background

The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74.

Findings

This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core.

Conclusions

Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.
  相似文献   

12.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   

13.

Background

In recent years, both single-nucleotide polymorphism (SNP) array and functional magnetic resonance imaging (fMRI) have been widely used for the study of schizophrenia (SCZ). In addition, a few studies have been reported integrating both SNPs data and fMRI data for comprehensive analysis.

Methods

In this study, a novel sparse representation based variable selection (SRVS) method has been proposed and tested on a simulation data set to demonstrate its multi-resolution properties. Then the SRVS method was applied to an integrative analysis of two different SCZ data sets, a Single-nucleotide polymorphism (SNP) data set and a functional resonance imaging (fMRI) data set, including 92 cases and 116 controls. Biomarkers for the disease were identified and validated with a multivariate classification approach followed by a leave one out (LOO) cross-validation. Then we compared the results with that of a previously reported sparse representation based feature selection method.

Results

Results showed that biomarkers from our proposed SRVS method gave significantly higher classification accuracy in discriminating SCZ patients from healthy controls than that of the previous reported sparse representation method. Furthermore, using biomarkers from both data sets led to better classification accuracy than using single type of biomarkers, which suggests the advantage of integrative analysis of different types of data.

Conclusions

The proposed SRVS algorithm is effective in identifying significant biomarkers for complicated disease as SCZ. Integrating different types of data (e.g. SNP and fMRI data) may identify complementary biomarkers benefitting the diagnosis accuracy of the disease.
  相似文献   

14.

Background

Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task.

Results

We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed.

Conclusions

The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.
  相似文献   

15.

Background

The Experimental Factor Ontology (EFO) is an application ontology driven by experimental variables including cell lines to organize and describe the diverse experimental variables and data resided in the EMBL-EBI resources. The Cell Line Ontology (CLO) is an OBO community-based ontology that contains information of immortalized cell lines and relevant experimental components. EFO integrates and extends ontologies from the bio-ontology community to drive a number of practical applications. It is desirable that the community shares design patterns and therefore that EFO reuses the cell line representation from the Cell Line Ontology (CLO). There are, however, challenges to be addressed when developing a common ontology design pattern for representing cell lines in both EFO and CLO.

Results

In this study, we developed a strategy to compare and map cell line terms between EFO and CLO. We examined Cellosaurus resources for EFO-CLO cross-references. Text labels of cell lines from both ontologies were verified by biological information axiomatized in each source. The study resulted in the identification 873 EFO-CLO aligned and 344 EFO unique immortalized permanent cell lines. All of these cell lines were updated to CLO and the cell line related information was merged. A design pattern that integrates EFO and CLO was also developed.

Conclusion

Our study compared, aligned, and synchronized the cell line information between CLO and EFO. The final updated CLO will be examined as the candidate ontology to import and replace eligible EFO cell line classes thereby supporting the interoperability in the bio-ontology domain. Our mapping pipeline illustrates the use of ontology in aiding biological data standardization and integration through the biological and semantics content of cell lines.
  相似文献   

16.

Objectives

To explore the effects of Lin28A on progression of osteocarcinoma (OS) cells.

Results

Lin28A mRNA and protein expressions were significantly increased in OS tissues compared with that in normal adjacent tissues. Expressions of Lin28A and long noncoding RNA MALAT1 were positively correlated. Patients with higher Lin28A expression had shorter overall survival. Moreover, Lin28A knockdown inhibited OS cells proliferation, migration, invasion and promoted cell apoptosis; Lin28A was found to harbor binding sites on MALAT1 sequences and associated with MALAT1, and increased MALAT1 stability and expression. Notably, the inhibition of Lin28A knockdown was attenuated or even reversed by MALAT1 overexpression.

Conclusions

RNA binding protein Lin28A could facilitate OS cells progression by associating with the long noncoding RNA MALAT1.
  相似文献   

17.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

18.

Background

Most phylogenetic studies using molecular data treat gaps in multiple sequence alignments as missing data or even completely exclude alignment columns that contain gaps.

Results

Here we show that gap patterns in large-scale, genome-wide alignments are themselves phylogenetically informative and can be used to infer reliable phylogenies provided the gap data are properly filtered to reduce noise introduced by the alignment method. We introduce here the notion of split-inducing indels (splids) that define an approximate bipartition of the taxon set. We show both in simulated data and in case studies on real-life data that splids can be efficiently extracted from phylogenomic data sets.

Conclusions

Suitably processed gap patterns extracted from genome-wide alignment provide a surprisingly clear phylogenetic signal and an allow the inference of accurate phylogenetic trees.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号