首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.  相似文献   

2.
A pool of PTEN localizes to the nucleus. However, the exact mechanism of action of nuclear PTEN remains poorly understood. We have investigated PTEN’s role during DNA damage response. Here we report that PTEN undergoes chromatin translocation after DNA damage, and that its translocation is closely associated with its phosphorylation on S366/T370 but not on S380. Deletional analysis reveals that the C2 domain of PTEN is responsible for its nuclear translocation after exposure to genotoxin. Both casein kinase 2 and GSK3β are involved in the phosphorylation of the S366/T370 epitope, as well as PTEN’s association with chromatin after DNA damage. Significantly, PTEN specifically interacts with Rad52 and colocalizes with Rad52, as well as γH2AX, after genotoxic stress. Moreover, PTEN is involved in regulating Rad52 sumoylation. Combined, our studies strongly suggest that nuclear/chromatin PTEN mediates DNA damage repair through interacting with and modulating the activity of Rad52.  相似文献   

3.
DNA double‐strand breaks (DSBs) induce a cellular response that involves histone modifications and chromatin remodeling at the damaged site and increases chromosome dynamics both locally at the damaged site and globally in the nucleus. In parallel, it has become clear that the spatial organization and dynamics of chromosomes can be largely explained by the statistical properties of tethered, but randomly moving, polymer chains, characterized mainly by their rigidity and compaction. How these properties of chromatin are affected during DNA damage remains, however, unclear. Here, we use live cell microscopy to track chromatin loci and measure distances between loci on yeast chromosome IV in thousands of cells, in the presence or absence of genotoxic stress. We confirm that DSBs result in enhanced chromatin subdiffusion and show that intrachromosomal distances increase with DNA damage all along the chromosome. Our data can be explained by an increase in chromatin rigidity, but not by chromatin decondensation or centromeric untethering only. We provide evidence that chromatin stiffening is mediated in part by histone H2A phosphorylation. Our results support a genome‐wide stiffening of the chromatin fiber as a consequence of DNA damage and as a novel mechanism underlying increased chromatin mobility.  相似文献   

4.
5.
A central feature of oogenesis in the copepod crustacean, Acanthocyclops vernalis, is the development of a very large nucleolus in the oocytes. This nucleolus appears to be the only source of rRNA for the oocyte, as no helper cells are present. Previous work has suggested that ribosomal DNA sequences other than those found at the morphological nucleolar organizers are participating in the elaboration of this nucleolus. It has been hypothesized that chromatin diminution, which occurs during early embryonic development, may involve the loss of these rDNA sequences, which are needed only for the production of ribosomes during oogenesis. The present study examines the development of the large oocyte nucleolus at the electron microscopic level. Nucleologenesis in A. vernalis was found to proceed through 5 stages. During the first 3 stages nucleolar morphology resembled that described in other organisms. In the last 2, however, nucleolar morphology changed radically and the nucleolus was seen to increase greatly in size while breaking up into multiple subunits. The subunits initially resemble active nucleoli, although in the last stage, synthesis appears to stop, as the nucleolus was found to consist only of dense areas containing ribosome-like particles. These observations are consistent with the hypothesis that diminuted DNA contains ribosomal RNA genes.  相似文献   

6.
We have recently described frequency-dependent effects of mobile phone microwaves (MWs) of global system for mobile communication (GSM) on human lymphocytes from persons reporting hypersensitivity to electromagnetic fields and healthy persons. Contrary to GSM, universal global telecommunications system (UMTS) mobile phones emit wide-band MW signals. Hypothetically, UMTS MWs may result in higher biological effects compared to GSM signal because of eventual "effective" frequencies within the wideband. Here, we report for the first time that UMTS MWs affect chromatin and inhibit formation of DNA double-strand breaks co-localizing 53BP1/gamma-H2AX DNA repair foci in human lymphocytes from hypersensitive and healthy persons and confirm that effects of GSM MWs depend on carrier frequency. Remarkably, the effects of MWs on 53BP1/gamma-H2AX foci persisted up to 72 h following exposure of cells, even longer than the stress response following heat shock. The data are in line with the hypothesis that the type of signal, UMTS MWs, may have higher biological efficiency and possibly larger health risk effects compared to GSM radiation emissions. No significant differences in effects between groups of healthy and hypersensitive subjects were observed, except for the effects of UMTS MWs and GSM-915 MHz MWs on the formation of the DNA repair foci, which were different for hypersensitive (P < 0.02[53BP1]//0.01[gamma-H2AX]) but not for control subjects (P > 0.05). The non-parametric statistics used here did not indicate specificity of the differences revealed between the effects of GSM and UMTS MWs on cells from hypersensitive subjects and more data are needed to study the nature of these differences.  相似文献   

7.
《Molecular cell》2021,81(24):4979-4993.e7
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

8.
The breast cancer associated gene 1 (BRCA1)‐A protein complex assembles at DNA damage‐induced nuclear foci to facilitate repair of double‐stranded breaks. Here, we describe the first systematic comparison of the dynamics, copy number and organization of its core components at foci. We show that the protein pools at individual foci generally comprise a small immobile fraction (~20%) and larger mobile fraction (~80%), which together occupy the same focal space but exist at different densities. In the mobile fraction, Abraxas (CCDC98) and the heterodimer BARD1–BRCA1 share similar rates of dynamic exchange (complete turnover in ~500 seconds). In contrast, RAP80, which is required for initial foci assembly, was more dynamic with 25‐fold faster turnover at mature foci. In addition, Abraxas, BARD1, BRCA1 and Merit40 (NBA1) were stably retained in the immobile fraction of foci under conditions causing loss of BRCC36 and RAP80, suggesting a shift to RAP80‐independent localization after foci formation. These results, combined with our finding that RAP80 (~1200 copies per focus) is twofold more abundant than Abraxas/BARD1/BRCA1 at foci, suggest new models defining the dynamic organization of BRCA1‐A complex at mature foci, wherein the unusually fast turnover of RAP80 may contribute to its regulation of BRCA1‐dependent DNA repair.  相似文献   

9.
10.
Pluripotent mouse embryonic stem cells (mES cells) exhibit ∼ 100 large γH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (> 10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous γH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of γH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, γH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive γH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock.  相似文献   

11.
BACKGROUND: Although nuclear transport of therapeutic genes is an essential requirement of human gene therapy, factors required for nuclear entry of DNA remain to be elucidated. Non-viral vector systems have led to numerous improvements in the efficiency of delivery of exogenous DNA into cells. However, nuclear transport of plasmid is difficult to achieve. METHODS: We examined nuclear translocation efficiency of Cy3-labeled plasmid DNA (Cy3-pDNA) delivered by the hemagglutinating virus of Japan envelope (HVJ-E) vector, Lipofectamine or microinjection. We also examined the effect of actin depolymerization on nuclear transport of Cy3-pDNA. RESULTS: Cy3-pDNA reached the nucleus, particularly in the nucleolus, in 30 min after fusion-mediated delivery using the HVJ-E vector, while the DNA was retained in the cytoplasm during the observed period after the delivery by cationic liposomes. HVJ-E treatment transiently depolymerized actin filaments, and acceleration of nucleolar entry of microinjected DNA was achieved when treated with either empty HVJ-E or cytochalasin D, an inhibitor of actin depolymerization, prior to microinjection. CONCLUSIONS: These results suggest that plasmid DNA can be transported rapidly from the cytoplasm to the nucleolus when actin filaments are depolymerized. Thus, the HVJ-E vector can accelerate the transport of DNA to the nucleolus by actin depolymerization.  相似文献   

12.
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double‐stranded DNA‐binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N‐terminus, a central H1/H5‐like domain and a C‐terminally located coiled‐coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double‐stranded DNA in vitro, while the central H1/H5‐like domain interacts non‐specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5‐like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle‐regulated, as the level of nuclear‐associated GFP diminishes during mitotic entry and GFP progressively re‐associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell‐cycle progression, with the other involving rapid exchange.  相似文献   

13.
hRad51 binding to ssDNA is significantly lowered in the presence of a nucleotide cofactor ATP/ADP/ATPgammaS. In these conditions, presence of trace amounts of hRad52 protein restores hRad51 binding to DNA. In the absence of any nucleotide cofactor where intrinsic binding of hRad51 to ssDNA is higher, hRad52 brings about no improved binding. hRad51 binding to ssDNA is strongly influenced by the DNA sequence. The protein binding to repeat sequences is poor compared to that of mixed DNA sequence. Interestingly, presence of hRad52 restores the ability of hRad51 binding to such DNA targets as well. Moreover, all the cooperative effects of hRad52 on hRad51 binding are highly specific to the latter's binding to ssDNA and not to dsDNA. These results help us to model important mechanistic steps of hRad51 presynapsis on ssDNA templates.  相似文献   

14.
At the onset of anaphase, a protease called separase breaks the link between sister chromatids by cleaving the cohesin subunit Scc1. This irreversible step in the cell cycle is promoted by degradation of the separase inhibitor, securin, and polo-like kinase (Plk) 1-dependent phosphorylation of the Scc1 subunit. Plk could recognize substrates through interaction between its phosphopeptide interaction domain, the polo-box domain, and a phosphorylated priming site in the substrate, which has been generated by a priming kinase beforehand. However, the physiological relevance of this targeting mechanism remains to be addressed for many of the Plk1 substrates. Here, we show that budding yeast Plk1, Cdc5, is pre-deposited onto cohesin engaged in cohesion on chromosome arms in G2/M phase cells. The Cdc5-cohesin association is mediated by direct interaction between the polo-box domain of Cdc5 and Scc1 phosphorylated at multiple sites in its middle region. Alanine substitutions of the possible priming phosphorylation sites (scc1-15A) impair Cdc5 association with chromosomal cohesin, but they make only a moderate impact on mitotic cell growth even in securin-deleted cells (pds1Δ), where Scc1 phosphorylation by Cdc5 is indispensable. The same scc1-15A pds1Δ double mutant, however, exhibits marked sensitivity to the DNA-damaging agent phleomycin, suggesting that the priming phosphorylation of Scc1 poses an additional layer of regulation that enables yeast cells to adapt to genotoxic environments.  相似文献   

15.
DNA replication sites (RS) in synchronized HeLa cells have been studied at the electron microscopic level. Using an improved method for detection following the in vivo incorporation of biotin-16-deoxyuridine triphosphate, discrete RS, or foci are observed throughout the S-phase. In particular, the much larger RS or foci typically observed by fluorescence microscopic approaches in mid- and late-S-phase, are found to be composed of smaller discrete foci that are virtually identical in size to the RS observed in early-S-phase. Pulse-chase experiments demonstrate that the RS of early-S-phase are maintained when chased through S-phase and into the next cell generation. Stereologic analysis demonstrates that the relative number of smaller sized foci present at a given time remains constant from early through mid-S-phase with only a slight decrease in late-S-phase. 3-D reconstruction of serial sections reveals a network-like organization of the RS in early-S-phase and confirms that numerous smaller-sized replication foci comprise the larger RS characteristic of late-S-phase.  相似文献   

16.
17.
Induction of local photosensitised DNA damage has been used to study recruitment of repair factors, spatial organisation and subsequent stages of the repair processes. However, the damage induced by a focused laser beam interacting with a photosensitiser may not fully reflect the types of damage and repair encountered in cells of an animal under typical conditions in vivo. We report on two characteristic stages of recruitment of XRCC1 (a protein engaged in BER and SSB repair pathways), in response to low level DNA damage induced by visible light. We demonstrate that, when just a few DNA breaks are induced in a small region of the nucleus, the recruited XRCC1 is initially distributed uniformly throughout this region, and rearranges into several small stationary foci within minutes. In contrast, when heavy damage of various types (including oxidative damage) is induced in cells pre-sensitized with a DNA-binding drug ethidium bromide, XRCC1 is also recruited but fails to rearrange from the stage of the uniform distribution to the stage of several small foci, indicating that this heavy damage interferes with the progress and completion of the repair processes. We hypothesize that that first stage may reflect recruitment of XRCC1 to poly(ADP-ribose) moieties in the region surrounding the single-strand break, while the second-binding directly to the DNA lesions. We also show that moderate damage or stress induces formation of two types of XRCC1-containing foci differing in their mobility. A large subset of DNA damage-induced XRCC1 foci is associated with a major component of PML nuclear bodies - the Sp100 protein.  相似文献   

18.
Cohesin is a ring‐shaped protein complex that plays a crucial role in sister chromatid cohesion and gene expression. The dynamic association of cohesin with chromatin is essential for these functions. However, the exact nature of cohesin dynamics, particularly cohesin translocation, remains unclear. We evaluated the dynamics of individual cohesin molecules on DNA and found that the cohesin core complex possesses an intrinsic ability to traverse DNA in an adenosine triphosphatase (ATPase)‐dependent manner. Translocation ability is suppressed in the presence of Wapl‐Pds5 and Sororin; this suppression is alleviated by the acetylation of cohesin and the action of mitotic kinases. In Xenopus laevis egg extracts, cohesin is translocated on unreplicated DNA in an ATPase‐ and Smc3 acetylation‐dependent manner. Cohesin movement changes from bidirectional to unidirectional when cohesin faces DNA replication; otherwise, it is incorporated into replicating DNA without being translocated or is dissociated from replicating DNA. This study provides insight into the nature of individual cohesin dynamics and the mechanisms by which cohesin achieves cohesion in different chromatin contexts.  相似文献   

19.
BRCA1 is an important mediator of the DNA damage response pathway. Previous studies have identified a number of proteins that associate with BRCA1 at nuclear foci after ionizing radiation (IR)-induced DNA damage. However, the co-localization patterns of BRCA1 and various DNA damage response proteins have not yet been systematically quantified and compared within the same experimental system. In this study, a new inducible human cell line was established to allow unambiguous detection of YFP–BRCA1 at nuclear foci. Quantitative 2-D microscopic analysis was performed to compare the intranuclear co-localization of YFP–BRCA1 with 10 cellular proteins and 4 cellular domains before and after IR. Intriguingly, YFP–BRCA1 displayed significantly better focal co-localization with BARD1, RAP80 and Abraxas than with the upstream foci-initiating proteins γH2AX and MDC1. In contrast to previous reports, we found that the co-localization between YFP–BRCA1 and 53BP1 foci was surprisingly weak. Quantitative analyses of 3-D confocal images showed that ~ 60% of 53BP1 foci were unrelated to YFP–BRCA1 foci, ~ 35% of foci were abutting and only ~ 5% of foci co-localized. The YFP–BRCA1 and 53BP1 nuclear foci were distinctively separated within the first 3 h after IR. In addition, in situ nuclear retention analysis revealed YFP–BRCA1 and BARD1 are less mobile than 53BP1 at IR-induced nuclear foci. Our findings indicate that BRCA1–BARD1 and 53BP1 are proximal but not overlapping at DNA break sites and are consistent with recent evidence for distinct roles of these proteins in the DNA damage response pathway.  相似文献   

20.
The development of a single, very large (25-35 microns diameter) nucleolus during oogenesis in the crustacean Acanthocyclops vernalis is described. The nucleolus is the site of ribosomal RNA production in the egg, as shown by in situ hybridization, and apparently the only source, as accessory cells are not observed. Ribosomal DNA amplification, as manifested by the presence of multiple nucleoli, is also not observed. Silver staining and C-banding suggest that chromosomal regions other than the nucleolar organizer are involved with the elaboration of the nucleolus. These observations, along with what is known about the nature of the DNA lost during the developmental process of chromatin diminution in this organism, suggest a relationship between the large oocyte nucleolus and the DNA lost during diminution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号