首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We describe a weakly biomineralized non‐trilobite artiopodan arthropod from the Guzhangian Weeks Formation of Utah. Falcatamacaris bellua gen. et sp. nov. is typified by a thin calcitic cuticle, broad cephalon without eyes or dorsal ecdysial sutures, an elongate trunk with distinctively sickle‐shaped pleural spines and a long tailspine with a bifurcate termination. The precise affinities of Falcatamacaris gen. nov. are problematic due to the presence of unique features within Artiopoda, such as the peculiar morphology of the pleural and posterior regions of the trunk. Possible affinities with aglaspidid‐like arthropods and concilitergans are discussed based on the possession of 11 trunk tergites, edge‐to‐edge articulations and overall body spinosity. The new taxon highlights the importance of the Weeks Formation Konservat‐Lagerstätte for further understanding the diversity of extinct arthropod groups in the upper Cambrian.  相似文献   

2.
Although the fossil record of biramous arthropods commences in the Lower Cambrian, unequivocal uniramous arthropods do not appear until the Upper Silurian, in association with terrestrial biotas. Here we report an Upper Cambrian marine arthropod from East Siberia that possesses some significant myriapodan features. The new arthropod,Xanthomyria spinosa n. gen., n. sp., closely resembles examples of archipolypodans from the Late Palaeozoic. If this resemblance genuinely represents myriapod affinities, this would be the first convincing myriapod from the Cambrian. Suggestions of an early branching point of the myriapods from other arthropods would be consistent with this. Conversely, an as yet poorly known clade of multi-segmented arthropods may exist in the Cambrian, with no close affinities to the myriapods.   相似文献   

3.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

4.
Yang, L., Mayden, R. L., Sado, T., He, S., Saitoh, K. & Miya, M. (2010). Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). —Zoologica Scripta, 39, 527–550. Carps (e.g. Koi) of the genus Cyprinus and Crucian carps (e.g. Goldfish) of the genus Carassius are among the most popular freshwater fishes around the world. However, their phylogenetic positions within the subfamily Cyprininae, relationships with their allies (e.g. Procypris, Carassioides), and the monophyly of the group formed by them and their allies, which is referred as the tribe Cyprinini sensu stricto, are far from clear. Historically, the Cyprinini was defined by different people according to whether a cyprinine fish possessed a spinous anal‐fin ray (or anal spine), the spine was serrated or not, and occasionally, the number of branched dorsal‐fin rays. Some definitions were established without providing any diagnostic characters. In this study, we investigated the monophyly of the tribe Cyprinini sensu stricto, based on four different historical definitions, and explored the phylogenetic relationships of these members in the subfamily Cyprininae. Using five mitochondrial genes as markers, both maximum‐likelihood and Bayesian trees were constructed using the optimal partitioning strategy. Both analyses successfully resolved a monophyletic Cyprininae and recovered seven major clades from this subfamily. The diagnosis limiting the tribe Cyprinini sensu stricto to four genera, Cyprinus, Carassius, Carassioides and Procypris, received most support. We propose that only those cyprinines that possess a serrated anal spine and have no <10 branched dorsal‐fin rays should be considered members of this tribe. Cyprinini is sister to the Sinocyclocheilus clade, a group traditionally considered a barbin, and together they form the ‘Cyprinini‐Sinocyclocheilus’ clade. Procypris forms the basal clade of the Cyprinini, whereas species of Carassius and Carassioides locate at the top.  相似文献   

5.
A phylogenetic analysis of morphological data from modern pterobranch hemichordates (Cephalodiscus, Rhabdopleura) and representatives of each of the major graptolite orders reveals that Rhabdopleura nests among the benthic, encrusting graptolite taxa as it shares all of the synapomorphies that unite the graptolites. Therefore, rhabdopleurids can be regarded as extant members of the Subclass Graptolithina (Class Pterobranchia). Combined with the results of previous molecular phylogenetic studies of extant deuterostomes, these results also suggest that the Graptolithina is a sister taxon to the Subclass Cephalodiscida. The Graptolithina, as an important component of Early–Middle Palaeozoic biotas, provide data critical to our understanding of early deuterostome phylogeny. This result allows one to infer the zooid morphology, mechanics of colony growth and palaeobiology of fossil graptolites in direct relation to the living members of the clade. The Subdivision Graptoloida (nom. transl.), which are all planktic graptolites, is well supported in this analysis. In addition, we recognize the clade Eugraptolithina (nov.). This clade comprises the Graptoloida and all of the other common and well‐known graptolites of the distinctive Palaeozoic fauna. Most of the graptolites traditionally regarded as tuboids and dendroids appear to be paraphyletic groups within the Eugraptolithina; however, Epigraptus is probably not a member of this clade. The Eugraptolithina appear to be derived from an encrusting, Rhabdopleura‐like species, but the available information is insufficient to resolve the phylogeny of basal graptolites. The phylogenetic position of Mastigograptus and the status of the Dithecoidea and Mastigograptida also remain unresolved. □ Biodiversity, Cambrian, Hemichordata, Deuterostomia, Ordovician.  相似文献   

6.
The Zosterophyllopsida were major contributors to the diversification of early land plants. We present the first detailed analysis of the diversity dynamics of these plants from an updated database of all currently recognized zosterophyllopsid species. A set of quantitative methods classically used in palaeodiversity studies was applied to two data sets. The first one, ‘Zosterophyllopsida sensu stricto’, corresponds to the clade identified by Hao & Xue (The Early Devonian Posongchong Flora of Yunnan. (2013), Science Press). In the second, called ‘Zosterophyllopsida sensu lato’, barinophytalean‐type plants and taxa for which zosterophyllopsid affinities are suspected are added. The number of localities is used to explore sampling bias. Results show that sampling effect is minimal for the Early Devonian. For this time interval, both data sets record consistent patterns of changes suggesting that, whatever their affinities, all taxa included in the Zosterophyllopsida sensu lato show similar evolutionary trends. The diversity dynamics of zosterophyllopsids are characterized by a radiation during the Lochkovian, maximal values in the Pragian and a decline starting in the Emsian. The proportion of zosterophyllalean taxa with terminal sporangia is high until the Late Lochkovian when gosslingialean taxa without terminal sporangia evolved. During the Middle and Late Devonian, when diversity patterns are strongly affected by sampling, zosterophyllopsid diversity is low and characterized by a high proportion of barinophytacean and gosslingialean taxa, the latter becoming extinct in the Early Frasnian.  相似文献   

7.
The Galerucinae (Coleoptera: Chrysomelidae) sensu stricto (true galerucines) comprise a large assemblage of diverse phytophagous beetles containing over 5000 described species. Together with their sister taxon, the flea beetles, which differ from true galerucines by having the hind femora usually modified for jumping, the Galerucinae sensu lato comprises over 13 000 described species and is the largest natural group within the Chrysomelidae. Unlike the flea beetles, for which robust hierarchical classification schemes have not been erected, an existing taxonomic structure exists for the true galerucines, based mostly on the works of the late John Wilcox. In the most recent taxonomic list of the Galerucinae sensu stricto, five tribes were established comprising 29 sections housing 488 genera. The majority of the diversity within these tribes is found within the tribe Luperini, in which two genera, Monolepta and Diabrotica, are known to contain over 500 described species. Here, we extend the work from previous phylogenetic studies of the Galerucinae by analysing four amplicons from three gene regions (18S and 28S rRNA; COI) representing 249 taxa, providing the largest phylogenetic analysis of this taxon to date. Using two seven‐state RNA models, we combine five maximum likelihood models (RNA + DNA for the rRNAs; three separate DNA models for the COI codon positions) for these partitions and analyse the data under likelihood using Bayesian inference. The results of these two analyses are compared with those from equally weighted parsimony. Instead of choosing the results from one optimality criterion over another, either based on statistical support, tree topology or philosophical predisposition, we elect to draw attention to the similar results produced by all three analyses, illustrating the robustness of the data to these different analytical methods. In general, the results from all three analyses are consistent with each other and previous molecular phylogenetic reconstructions for Galerucinae, except that increased taxon sampling for several groups, namely the tribes Hylaspini and Oidini, has improved the phylogenetic position of these taxa. As with previous analyses, under‐sampled taxa, such as the Old World Metacyclini and all sections of the subtribe Luperina, continue to be unstable, with the few taxa representing these groups fluctuating in their positions based on the implemented optimality criterion. Nonetheless, we report here the most comprehensive phylogenetic estimation for the Galerucinae to date.  相似文献   

8.
Abstract: The lower Cambrian Emu Bay Shale on Kangaroo Island, South Australia, contains the only known Cambrian Burgess Shale‐type biota in Australia. Two new lamellipedian arthropods, Emucaris fava gen. et sp. nov. and Kangacaris zhangi gen. et sp. nov., from the Emu Bay Shale Lagerstätte are described as monotypic genera that are resolved cladistically as a monophyletic group that is sister to Naraoiidae + Liwiidae and classified within the Nektaspida as a new family Emucarididae. Shared derived characters of Emucarididae involve a bipartite, elongate hypostome and elongation of the pygidium relative to the cephalic shield and very short thorax. A monophyletic Liwiidae is composed of Liwia and the Ordovician Tariccoia + Soomaspis but excludes Buenaspis, and even the membership of Buenaspis in Nektaspida is contradicted amongst the shortest cladograms. New morphological interpretations favour affinities of Kwanyinaspis with Conciliterga rather than with Aglaspidida, and Phytophilaspis with Petalopleura.  相似文献   

9.
Morphological and molecular studies have been undertaken on two species of the red algal genus Laurencia J.V.Lamouroux: Laurencia majuscula (Harvey) A.H.S. Lucas and Laurencia dendroidea J.Agardh, both from their type localities. The phylogenetic position of these species was inferred by analysis of the chloroplast‐encoded rbcL gene sequences from 24 taxa. In all phylogenetic analyses, the Australian Laurencia majuscula and the Brazilian L. dendroidea formed a well‐supported monophyletic clade within the Laurencia sensu stricto. This clade was divided into two subclades corresponding to each geographical region; however, the genetic divergence between Australian L. majuscula and Brazilian L. dendroidea was only 0–1.35%. Examination of the type specimens and sequences of freshly collected samples of both Laurencia majuscula and L. dendroidea show the two to be conspecific despite their disjunct type localities.  相似文献   

10.
Eublastoids are a large clade of blastoids; stemmed blastozoan echinoderms diagnosed by their conservative body plan (three basals, four deltoid plates and five radial plates), lancet plate supporting the ambulacra, and hydrospire respiratory structures. Although Eublastoidea was a highly successful clade in the middle and late Palaeozoic it is absent from early echinoderm radiations seen in the Cambrian and Ordovician record. Here we provide a re‐evaluation of Macurdablastus uniplicatus Broadhead from the Ordovician, using detailed morphological assessment based on advanced synchrotron tomography and phylogenetic analysis. Macurdablastus uniplicatus falls outside Eublastoidea because of the morphological differences in lancet plate and respiratory structures. The oldest recorded eublastoid is thus middle Silurian in age. The re‐evaluation of the morphology of Macurdablastus provides a basis for revising blastoid phylogeny and classification.  相似文献   

11.
A new trace fossil, Raaschichnus gundersoni , from the Upper Cambrian St. Lawrence Formation of Wisconsin, was produced by an aglaspidid arthropod. The rusophyciform trace, which occurs singly and in series, is distinctive in showing marks left by the tail-spine. Other trace fossils previously considered to have been made by aglaspidids were probably excavated by animals lacking a tail-spine and with appendage morphologies very different from the aglaspidids of Wisconsin.  相似文献   

12.
Benedetto, J.L. 2013: Presence of punctae in the ‘plectorthoidean’ brachiopod Famatinorthis turneri (Middle Ordovician) from western Argentina: implications for early diversification of punctate orthides. Lethaia, Vol. 46, pp. 170–179. Famatinorthis Levy & Nullo is a distinctive orthide brachiopod of Dapingian age from the volcaniclastic rocks of the Famatina Range of western Argentina. Although it was originally classified among the plectorthoideans, a new collection from the La Escondida Formation has yielded exceptionally well‐preserved moulds of Famatinorthis turneri in which silicified infillings of punctae are clearly visible, leading to the reassignment of the genus to the dalmanellidines. In this paper, phylogenetic analyses are used to determine the evolutionary relationships of Famatinorthis, the Tremadocian linoporellid Lipanorthis, and other Ordovician Gondwanan genera. The placement of Plectorthoidea in the same major clade as linoporellids, and the separation of Dalmanellidina as an independent clade are the most important features of all shortest trees, supporting the idea that linoporellids may have originated from a plectorthoid ancestor. Cladistic analysis reveals that Lipanorthis lies close to the ancestry of the linoporellid lineage, and Famatinorthis clusters within the more derived taxa of the clade with which it shares a large septalium. It seems that the presence of endopunctae in the orthides does not necessarily indicate close phylogenetic relationships as it could have occurred at different times in different clades. If the homoplasic nature of endopunctae in the order Orthida is supported by further morphologic and phylogenetic studies, the fundamental division of orthides in non‐punctate (Orthidina) and punctate (Dalmanellidina) may need revision. □Brachiopods, Ordovician, Gondwana, Famatina, phylogeny, punctate orthides.  相似文献   

13.
The melyrid lineage of beetles form a distinct group of the superfamily Cleroidea with a high level of soft‐bodiedness. Here we present the first molecular phylogenetic analysis of this group. The data matrix included partial sequences of the small and large subunits of rRNA, the mitochondrial large subunit rRNA, and cytochrome oxidase subunit I of 67 melyrid and eight outgroup taxa. The concatenated sequences were analysed using maximum‐parsimony (MP), maximum‐likelihood (ML) and Bayesian analysis (BA) approach. The results strongly supported the monophyly of the melyrid lineage splitting into six major clades: Rhadalidae, Mauroniscidae, Prionoceridae, Melyridae sensu stricto, Dasytidae and Malachiidae. The rhadalids were placed in the most basal position, followed by mauroniscids and prionocerids. Three terminal lineages—the true melyrids, dasytids, and malachiids—are well supported by all analyses, but their mutual relationships remain uncertain as MP analysis proposed alternative topologies to that of the ML and BA trees, with often low node support in the latter two methods. The monophyly of the subfamily Danacaeinae (Dasytidae) with respect to the danacaeine genera of the southern hemisphere (Hylodanacaea, Listrocerus, Amecocerus) was challenged as they were found to be polyphyletic. Similarly, the monophyly of Attalus was rejected by our analyses and shown to be polyphyletic. Based on the preferred phylogenetic hypothesis, the subfamilies Rhadalinae, Dasytinae and Malachiinae are elevated to family rank. © The Willi Hennig Society 2011.  相似文献   

14.
The phylogenetic relationships between the tribes Inuleae sensu stricto and Plucheeae are investigated by analysis of sequence data from the cpDNA gene ndhF. The delimitation between the two tribes is elucidated, and the systematic positions of a number of genera associated with these groups, i.e. genera with either aberrant morphological characters or a debated systematic position, are clarified. Together, the Inuleae and Plucheeae form a monophyletic group in which the majority of genera of Inuleae s.str. form one clade, and all the taxa from the Plucheeae together with the genera Antiphiona, Calostephane, Geigeria, Ondetia, Pechuel-loeschea, Pegolettia, and Iphionopsis from Inuleae s.str. form another. Members of the Plucheeae are nested with genera of the Inuleae s.str., and support for the Plucheeae clade is weak. Consequently, the latter cannot be maintained and the two groups are treated as one tribe, Inuleae, with the two subtribes Inulinae and Plucheinae. The genera Asteriscus, Chrysophthalmum, Inula, Laggera, Pentanema, Pluchea, and Pulicaria are demonstrated to be non-monophyletic. Cratystylis and Iphionopsis are found to belong to the same clade as the taxa of the former Plucheeae. Caesulia is shown to be a close relative of Duhaldea and Blumea of the Inuleae-Inulinae. The genera Callilepis and Zoutpansbergia belong to the major clade of the family that includes the tribes Heliantheae sensu lato and Inuleae (incl. Plucheeae), but their exact position remains unresolved. The genus Gymnarrhena is not part of the Inuleae, but is either part of the unresolved basal complex of the paraphyletic Cichorioideae, or sister to the entire Asteroideae.  相似文献   

15.
Twenty‐six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S‐23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.  相似文献   

16.
This study documents previously unknown taxonomic and morphological diversity among early Palaeozoic crinoids. Based on highly complete, well preserved crown material, we describe two new genera from the Ordovician and Silurian of the Baltic region (Estonia) that provide insight into two major features of the geological history of crinoids: the early evolution of the flexible clade during the Great Ordovician Biodiversification Event (GOBE), and their diversification history surrounding the end‐Ordovician mass extinction. The unexpected occurrence of a highly derived sagenocrinid, Tintinnabulicrinus estoniensis gen. et. sp. nov., from Upper Ordovician (lower Katian) rocks of the Baltic palaeocontinent provides high‐resolution temporal, taxonomic and palaeobiogeographical constraints on the origin and early evolution of the Flexibilia. The Silurian (lower Rhuddanian, Llandovery) Paerticrinus arvosus gen. et sp. nov. is the oldest known Silurian crinoid from Baltica and thus provides the earliest Baltic record of crinoids following the aftermath of the end‐Ordovician mass extinction. A Bayesian ‘fossil tip‐dating’ analysis implementing the fossilized birth–death process and a relaxed morphological clock model suggests that flexibles evolved c. 3 million years prior to their oldest fossil record, potentially involving an ancestor–descendant relationship (via ‘budding’ cladogenesis or anagenesis) with the paraphyletic cladid Cupulocrinus. The sagenocrinid subclade rapidly diverged from ‘taxocrinid’ grade crinoids during the final stages of the GOBE, culminating in maximal diversity among Ordovician crinoid faunas on a global scale. Remarkably, diversification patterns indicate little taxonomic turnover among flexibles across the Late Ordovician mass extinction. However, the elimination of closely related clades may have helped pave the way for their subsequent Silurian diversification and increased ecological role in post‐Ordovician Palaeozoic marine communities. This study highlights the significance of studies reporting faunas from undersampled palaeogeographical regions for clade‐based phylogenetic studies and improving estimates of global biodiversity through geological time.  相似文献   

17.
We describe the exceptionally well-preserved non-trilobite artiopodan Zhiwenia coronata gen. et sp. nov. from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Yunnan, China. The exoskeleton consists of a cephalic shield with dorsal sutures expressed as lateral notches that accommodate stalked lateral eyes, an elongate trunk composed of 20 tergites—the first of which is reduced—and a short tailspine with marginal spines. Appendicular data include a pair of multi-segmented antennae, and homonomous biramous trunk limbs consisting of an endopod with at least seven podomeres and a flattened exopod with lamellae. Although the presence of cephalic notches and a reduced first trunk tergite invites comparisons with the petalopleurans Xandarella, Luohiniella and Cindarella, the proportions and exoskeletal tagmosis of Zhiwenia do not closely resemble those of any major group within Trilobitomorpha. Parsimony and Bayesian phylogenetic analyses consistently support Zhiwenia as sister-taxon to the Emu Bay Shale artiopodan Australimicola spriggi, and both of them as closely related to Acanthomeridion from the Chengjiang. This new monophyletic clade, Protosutura nov., occupies a basal phylogenetic position within Artiopoda as sister-group to Trilobitomorpha and Vicissicaudata, illuminates the ancestral organization of these successful euarthropods, and leads to a re-evaluation of the evolution of ecdysial dorsal sutures within the group.  相似文献   

18.
The lizard genus Liolaemus and different clades within it have been the focus of several recent phylogenetic studies mainly based on morphology and mtDNA. Although there is general consensus for recognizing two clades (subgenera) within the genus, [Liolaemus (sensu stricto) and Eulaemus], phylogenetic relationships within each subgenus remain difficult to elucidate, given incomplete taxonomic sampling and large discordance between published studies. Here, new phylogenetic relationships for the Eulaemus subgenus are proposed based on the largest molecular data set ever used for this clade, which includes 188 individuals and 14 loci representing different parts of the genome (mtDNA, anonymous nuclear loci and nuclear protein‐coding loci). This data set was analysed using two species tree approaches (*beast and MDC). Levels of discordance among methods were found, and with previously published studies, but results are robust enough to propose new phylogenetic hypotheses for the Eulaemus clade. Specifically well‐resolved and well‐supported novel hypotheses are provided within the lineomaculatus section, and we formally recognize the zullyae clade, the sarmientoi clade and the hatcheri group. We also resolve species relationships within the montanus section, and particularly within the melanops series. We found discordance between mitochondrial and nuclear trees and discussed alternative hypotheses for the lineomaculatus and montanus sections, as well as the challenge in resolving phylogenetic relationships for large clades in general.  相似文献   

19.
A new genus belonging to the braconid wasp subfamily Doryctinae, Kauriphanes n. gen. (type species K. khalaimi n. sp.), is described from New Zealand. This genus is placed within the doryctine subtribe Caenophanina. The extent of this subtribe is discussed and the phylogenetic relationships of three of its genera were investigated using one mitochondrial and one nuclear DNA sequence markers. Similar to previous studies, the Bayesian analyses performed significantly support a clade with the included members of Caenophanina as a sister group of a clade with the examined species of Spathiini sensu stricto. The placement of the Caenophanini within Doryctini, however, is left pendant to further exhaustive phylogenetic studies. A key to genera and subgenera belonging to Caenophanina is given.  相似文献   

20.
The Aeolosomatidae and the Parergodrilidae are meiofaunal Annelida showing different combinations of clitellate‐like and non‐clitellate character states. Their phylogenetic positions and their systematic status within the Annelida are still in debate. Here we attempt to infer their systematic position using 18S rDNA sequences of the aeolosomatid Aeolosoma sp. and the parergodrilid Stygocapitella subterranea and several other meiofaunal taxa such as the Dinophilidae, Polygordiidae and Saccocirridae. The data matrix was complemented by sequences from several annelid, arthropod and molluscan species. After evaluation of the phylogenetic signal the data set was analysed with maximum‐parsimony, distance and maximum‐likelihood algorithms. Sequences from selected arthropods or molluscs were chosen for outgroup comparison. The resolution of the resulting phylogenies is discussed in comparison to previous studies. The results do not unequivocally support a sister‐group relationship of Aeolosoma sp. and the Clitellata. Instead, depending on the algorithms applied, Aeolosoma clusters in various clades within the polychaetes, for instance, together with eunicidan species, the Dinophilidae, Harmothoë impar or Nereis limbata. The position of Aeolosoma sp. thus cannot be resolved on the basis of the data available. S. subterranea always falls close to a cluster comprising Scoloplos armiger, Questa paucibranchiata and Magelona mirabilis, all of which were resolved as not closely related to both Aeolosoma sp. and the Clitellata. Therefore, convergent evolution of clitellate‐like characters in S. subterranea and hence in the Parergodrilidae is suggested by our phylogenetic analysis. Moreover, the Clitellata form a monophyletic clade within the paraphyletic polychaetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号