首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin‐resistant non‐small human cell lung cancer and ovarian cancer cell lines. Cisplatin‐resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin‐sensitive controls. The susceptibility of cisplatin‐resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin‐resistant clones, and glutamine supplementation rescued cisplatin‐resistant clones from starvation‐induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin‐resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin‐resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.  相似文献   

3.
4.
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC‐MS‐based isotope tracer studies with oxygen uptake measurements in a quantitative redox‐balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine‐driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine‐driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.  相似文献   

5.
Carbon and nitrogen are essential elements for life. Glucose as a carbon source and glutamine as a nitrogen source are important nutrients for cell proliferation. About 100 years ago, it was discovered that cancer cells that have acquired unlimited proliferative capacity and undergone malignant evolution in their host manifest a cancer-specific remodeling of glucose metabolism (the Warburg effect). Only recently, however, was it shown that the metabolism of glutamine-derived nitrogen is substantially shifted from glutaminolysis to nucleotide biosynthesis during malignant progression of cancer—which might be referred to as a “second” Warburg effect. In this review, address the mechanism and relevance of this metabolic shift of glutamine-derived nitrogen in human cancer. We also examine the clinical potential of anticancer therapies that modulate the metabolic pathways of glutamine-derived nitrogen. This shift may be as important as the shift in carbon metabolism, which has long been known as the Warburg effect.  相似文献   

6.
7.
A global kinetic study of the central metabolism of Vero cells cultivated in a serum‐free medium is proposed in the present work. Central metabolism including glycolysis, glutaminolysis, and tricarboxylic acid cycle (TCA) was demonstrated to be saturated by high flow rates of consumption of the two major substrates, glucose, and glutamine. Saturation was reavealed by an accumulation of metabolic intermediates and amino acids, by a high production of lactate needed to balance the redox pathway, and by a low participation of the carbon flow to the TCA cycle supply. Different culture conditions were set up to reduce the central metabolism saturation and to better balance the metabolic flow rates between lactate production and energetic pathways. From these culture conditions, substitutions of glutamine by other carbon sources, which have lower transport rates such as asparagine, or pyruvate in order to shunt the glycolysis pathway, were successful to better balance the central metabolism. As a result, an increase of the cell growth with a concomitant decrease of cell death and a better distribution of the carbon flow between TCA cycle and lactate production occurred. We also demonstrated that glutamine was a major carbon source to supply the TCA cycle in Vero cells and that a reduction of lactate production did not necessary improve the efficiency of the Vero cell metabolism. Thus, to adapt the formulation of the medium to the Vero cell needs, it is important to provide carbon substrates inducing a regulated supply of carbon in the TCA cycle either through the glycolysis or through other pathways such as glutaminolysis. Finally, this study allowed to better understand the Vero cell behavior in serum‐free medium which is a valuable help for the implementation of this cell line in serum‐free industrial production processes. Biotechnol. Bioeng. 2010;107: 143–153. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
The aim of the study was to compare the energy metabolism of oocytes from pre‐pubertal (2 to 3 months) and adult cows during maturation, to identify the cause of poor developmental potential in many pre‐pubertal oocytes. The metabolism of [5‐3H] glucose, [2‐14C] pyruvate, and [G‐3H] glutamine was measured at 0 hr, 12 hr, and 24 hr maturation. Oxidative metabolism was important during maturation of oocytes from both pre‐pubertal and adult cows, with pyruvate metabolism peaking at 12 hr and glutamine metabolism increasing linearly and peaking at 24 hr. Peak oxidative metabolism was significantly lower in oocytes from pre‐pubertal animals, for both pyruvate and glutamine (P < 0.05). Glucose metabolism increased significantly during oocyte maturation in both groups (0hr to 24 hr). Glucose metabolism was significantly lower in oocytes from pre‐pubertal cows at 12 hr (P < 0.05). Oocytes from pre‐pubertal animals were significantly smaller than oocytes from adult cows at 0 hr, 12 hr, and 24 hr maturation (P < 0.05). When metabolic rates were corrected for oocyte volume, there were no significant differences in substrate metabolism between oocytes from pre‐pubertal and adult cows. There was however, a delay in the increase in glucose metabolism in pre‐pubertal oocytes 0 hr to 12 hr maturation. Germinal vesicle breakdown was slower in oocytes from pre‐pubertal animals with more oocytes still at the germinal vesicle stage approximately 5 hr post‐aspiration, compared to oocytes from adult cows (P < 0.05). By 24 hr, development to metaphase II was equivalent for pre‐pubertal and adult oocytes. This study identified differences in energy metabolism, oocyte size, and meiotic progression between the oocytes from pre‐pubertal and adult cows that may account for the poor developmental potential of many pre‐pubertal oocytes. Mol. Reprod. Dev. 54:92–101, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
10.
13C‐metabolic flux analysis was used to understand copper deficiency‐related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein‐producing CHO cells. Stationary‐phase labeling experiments with U‐13C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed‐batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC‐MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%–79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%–23% and 74%, respectively) compared with the Cu‐containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper‐deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1179–1186, 2015  相似文献   

11.
12.
13.
Oxidative stress resistant Deinococcus radiodurans surprisingly exhibited moderate sensitivity to tellurite induced oxidative stress (LD50 = 40 μM tellurite, 40 min exposure). The organism reduced 70% of 40 μM potassium tellurite within 5 h. Tellurite exposure significantly modulated cellular redox status. The level of ROS and protein carbonyl contents increased while the cellular reduction potential substantially decreased following tellurite exposure. Cellular thiols levels initially increased (within 30 min) of tellurite exposure but decreased at later time points. At proteome level, tellurite resistance proteins (TerB and TerD), tellurite reducing enzymes (pyruvate dehydrogense subunits E1 and E3), ROS detoxification enzymes (superoxide dismutase and thioredoxin reductase), and protein folding chaperones (DnaK, EF‐Ts, and PPIase) displayed increased abundance in tellurite‐stressed cells. However, remarkably decreased levels of key metabolic enzymes (aconitase, transketolase, 3‐hydroxy acyl‐CoA dehydrogenase, acyl‐CoA dehydrogenase, electron transfer flavoprotein alpha, and beta) involved in carbon and energy metabolism were observed upon tellurite stress. The results demonstrate that depletion of reduction potential in intensive tellurite reduction with impaired energy metabolism lead to tellurite toxicity in D. radiodurans.  相似文献   

14.
The goal to prevent Plasmodium falciparum transmission from humans to mosquitoes requires the identification of targetable metabolic processes in the mature (stage V) gametocytes, the sexual stages circulating in the bloodstream. This task is complicated by the apparently low metabolism of these cells, which renders them refractory to most antimalarial inhibitors and constrains the development of specific and sensitive cell‐based assays. Here, we identify and functionally characterize the regulatory regions of the P. falciparum gene PF3D7_1234700, encoding a CPW‐WPC protein and named here Upregulated in Late Gametocytes (ULG8), which we have leveraged to express reporter genes in mature male and female gametocytes. Using transgenic parasites containing a pfULG8‐luciferase cassette, we investigated the susceptibility of stage V gametocytes to compounds specifically affecting redox metabolism. Our results reveal a high sensitivity of mature gametocytes to the glutathione reductase inhibitor and redox cycler drug methylene blue (MB). Using isobologram analysis, we find that a concomitant inhibition of the parasite enzyme glucose‐6‐phosphate dehydrogenase‐6‐phosphogluconolactonase, a key component of NADPH synthesis, potently synergizes MB activity. These data suggest that redox metabolism and detoxification activity play an unsuspected yet vital role in stage V gametocytes, rendering these cells exquisitely sensitive to decreases in NADPH concentration.  相似文献   

15.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

16.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   

17.
We have previously shown that peculiar metabolic features of cell adaptation and survival in hypoxia imply growth restriction points that are typical of embryonic stem cells and disappear with differentiation. Here we provide evidence that such restrictions can be exploited as specific antiblastic targets by physiological factors such as pyruvate, tetrahydrofolate, and glutamine. These metabolites act as powerful cytotoxic agents on cancer stem cells (CSCs) when supplied at doses that perturb the biochemical network, sustaining the resumption of aerobic growth after the hypoxic dormant state. Experiments were performed in vivo and in vitro using CSCs obtained from various anaplastic tumors: human melanoma, leukemia, and rat hepatoma cells. Pretreatment of melanoma CSCs with pyruvate significantly reduces their self-renewal in vitro and tumorigenicity in vivo. The metabolic network underlying the cytotoxic effect of the physiological factors was thoroughly defined, principally using AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem stage. This network, based on a tight integration of aerobic glycolysis, cellular redox state, and folate metabolism, is centered on the cellular NADP/NADPH ratio that controls the redox pathway of folate utilization in purine synthesis. On the whole, this study indicates that pyruvate, FH4, and glutamine display anticancer activity, because CSCs are committed to survive and maintain their stemness in hypoxia. When CSC need to differentiate and proliferate, they shift from anaerobic to aerobic status, and the few mitochondria available makes them susceptible to the injury of the above physiological factors. This vulnerability might be exploited for novel therapeutic treatments.  相似文献   

18.
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal‐fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse‐chase LC‐MS‐based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine‐derived fluxes: Oxidation of glucose‐derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation.  相似文献   

19.
20.
To identify the energy source that drives the biosynthesis of amino acids, lipids, and nucleotides from glucose, we calculated the free energy change due to redox disproportionation of the substrate carbon of (1) 26-carbon fermentation reactions and (2) the biosynthesis of amino acids and lipids of E. coli from glucose. The free energy (cal/mmol of carbon) of these reactions was plotted as a function of the degree of redox disproportionation of carbon (disproportionative electron transfers (mmol)/mmol of carbon). The zero intercept and proportionality between energy yield and degree of redox disporportionation exhibited by this plot demonstrate that redox disproportionation is the principal energy source of these redox reactions (slope of linear fit =−10.4 cal/mmol of disproportionative electron transfers). The energy and disproportionation values of E. coli amino acid and lipid biosynthesis from glucose lie near this linear curve fit with redox disproportionation accounting for 84% and 96% (and ATP only 6% and 1%) of the total energy of amino acid and lipid biosynthesis, respectively. These observations establish that redox disproportionation of carbon, and not ATP, is the primary energy source driving amino acid and lipid biosynthesis from glucose. In contrast, we found that nucleotide biosynthesis involves very little redox disproportionation, and consequently depends almost entirely on ATP for energy. The function of sugar redox disproportionation as the major source of free energy for the biosynthesis of amino acids and lipids suggests that sugar disproportionation played a central role in the origin of metabolism, and probably the origin of life. Received: 18 April 1996 / Accepted: 31 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号