首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understory Vegetation Dynamics of North American Boreal Forests   总被引:2,自引:0,他引:2  
Understory vegetation is the most diverse and least understood component of North American boreal forests. Understory communities are important as they act as drivers of overstory succession and nutrient cycling. The objective of this review was to examine how understory vegetation abundance, composition, and diversity change with stand development after a major stand replacing disturbance. Understory vegetation abundance and diversity increase rapidly after fire, in response to abundant resources and an influx of disturbance adapted species. The highest diversity occurs within the first 40 years following fire, and declines indefinitely thereafter as a result of decreasing productivity and increased dominance of a small number of late successional feather mosses and woody plant species. Vascular plant and bryophyte/lichen communities undergo very different successional changes. Vascular plant communities are dynamic and change more dramatically with time after fire, whereas bryophyte and lichen communities are much slower to establish and change over time. Considerable variations in these processes exist depending on canopy composition, site condition, regional climate, and frequently occurring non-stand-replacing disturbances. Forest management practices represent a unique disturbance process and can result in different understory vegetation communities from those observed for natural processes, with potential implications for overstory succession and long-term productivity. Because of the importance of understory vegetation on nutrient cycling and overstory composition, post-harvest treatments emulating stand-replacing fire are required to maintain understory diversity, composition, and promote stand productivity in boreal forests.  相似文献   

2.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

3.
临安次生灌丛植物多样性对林火烈度空间异质性的响应   总被引:1,自引:0,他引:1  
以同一过火3a后临安市太阳镇天然次生灌丛为对象,采用样地调查法按不同林火烈度设置火干扰样地进行植物群落调查,以检验林分内部的林火烈度异质性是否与局部的植物多样性变化相关。结果表明:研究区共有高等植物83种,分属于38科67属,群落区系组成以亚热带科属为主,表现出常绿阔叶林已退化过渡到位于演替早期阶段的落叶次生灌丛群落的性质;低林火烈度对灌木层的树种组成有影响,但不明显;中烈度林火对灌木层的物种组成影响较大;低、中林火烈度下草本层的物种组成变化都很明显;灌木层的物种数和多样性指数都表现出低烈度火未火烧中烈度火的趋势;草本层的物种数、多样性指数和均匀度指数表现出中烈度火低烈度火未火烧的趋势;草本层的物种组成和多样性受林火烈度的影响较灌木层更大。研究表明次生灌丛群落过火区内部林火烈度异质性在初期会引起植物多样性的响应差异;低烈度火干扰可以增加次生灌丛生物多样性、促进群落更新;中烈度火干扰下木本植物物种多样性丧失较大,而草本植物多样性显著增加,不利于群落的正向演替。  相似文献   

4.
Wildfires are a pervasive disturbance in boreal forests, and the frequency and intensity of boreal wildfires is expected to increase with climate warming. Boreal forests store a large fraction of global soil organic carbon (C), but relatively few studies have documented how wildfires affect soil microbial communities and soil C dynamics. We used a fire chronosequence in upland boreal forests of interior Alaska with sites that were 1, 7, 12, 24, 55, ~90, and ~100 years post-fire to examine the short- and long-term responses of fungal community composition, fungal abundance, extracellular enzyme activity, and litter decomposition to wildfires. We hypothesized that post-fire changes in fungal abundance and community composition would constrain decomposition following fires. We found that wildfires altered the composition of soil fungal communities. The relative abundance of ascomycetes significantly increased following fire whereas basidiomycetes decreased. Post-fire decreases in basidiomycete fungi were likely attributable to declines in ectomycorrhizal fungi. Fungal hyphal lengths in the organic horizon significantly declined in response to wildfire, and they required at least 24 years to return to pre-fire levels. Post-fire reductions in fungal hyphal length were associated with decreased activities of hydrolytic extracellular enzymes. In support of our hypothesis, the decomposition rate of aspen and black spruce litter significantly increased as forests recovered from fire. Our results indicate that post-fire reductions in soil fungal abundance and activity likely inhibit litter decomposition following boreal wildfires. Slower rates of litter decay may lead to decreased heterotrophic respiration from soil following fires and contribute to a negative feedback to climate warming.  相似文献   

5.
Climate change is altering disturbance regimes outside historical norms, which can impact biodiversity by selecting for plants with particular traits. The relative impact of disturbance characteristics on plant traits and community structure may be mediated by environmental gradients. We aimed to understand how wildfire impacted understory plant communities and plant regeneration strategies along gradients of environmental conditions and wildfire characteristics in boreal forests. We established 207 plots (60 m2) in recently burned stands and 133 plots in mature stands with no recent fire history in comparable gradients of stand type, site moisture (drainage) and soil organic layer (SOL) depth in two ecozones in Canada's Northwest Territories. At each plot, we recorded all vascular plant taxa in the understory and measured the regeneration strategy (seeder, resprouter, survivor) in burned plots, along with seedbed conditions (mineral soil and bryophyte cover). Dispersal, longevity and growth form traits were determined for each taxon. Fire characteristics measured included proportion of pre-fire SOL combusted (fire severity), date of burn (fire seasonality) and pre-fire stand age (time following fire). Results showed understory community composition was altered by fire. However, burned and mature stands had similar plant communities in wet sites with deep SOL. In the burned plots, regeneration strategies were determined by fire severity, drainage and pre- and post-fire SOL depth. Resprouters were more common in wet sites with deeper SOL and lower fire severity, while seeders were associated with drier sites with thinner SOL and greater fire severity. This led to drier burned stands being compositionally different from their mature counterparts and seedbed conditions were important. Our study highlights the importance of environment–wildfire interactions in shaping plant regeneration strategies and patterns of understory plant community structure across landscapes, and the overriding importance of SOL depth and site drainage in mediating fire severity, plant regeneration and community structure.  相似文献   

6.
This study was conducted to evaluate the effects of wildfires on ectomycorrhizal (EM) fungal communities in Scots pine ( Pinus sylvestris ) stands. Below- and above-ground communities were analysed in terms of species richness and evenness by examining mycorrhizas and sporocarps in a chronosequence of burned stands in comparison with adjacent unburned late-successional stands. The internal transcribed spacer (ITS)-region (rDNA) of mycobionts from single mycorrhizas was digested with three restriction enzymes and compared with an ITS–restriction fragment length polymorphism (RFLP) reference database of EM sporocarps. Spatial variation seemed to be more prominent than the effects of fire on the EM fungal species composition. Most of the common species tended to be found in all sites, suggesting that EM fungal communities show a high degree of continuity following low-intensity wildfires. Species richness was not affected by fire, whereas the evenness of species distributions of mycorrhizas was lower in the burned stands. The diversity of EM fungi was relatively high considering that there were only three EM tree species present in the stands. In total, 135 EM taxa were identified on the basis of their RFLP patterns; 66 species were recorded as sporocarps, but only 11 of these were also recorded as mycorrhizas. The species composition of the below-ground community of EM fungi did not reflect that of the sporocarps produced. EM fungal species present in our ITS–RFLP reference database accounted for 54–99% of the total sporocarp production in the stands, but only 0–32% of the mycorrhizal abundance.  相似文献   

7.
Fungi are essential components of all terrestrial ecosystems. Despite the crucial ecological role of soil fungi in grasslands, knowledge about fungal community diversity and structure in Mediterranean meadow habitats is still fragmentary. We analyzed macrofungal communities in three geographically distinct Mediterranean montane calcareous grasslands and surrounding forests, by means of fruit body surveys. We investigated a number of biotic and abiotic factors influencing the studied fungal communities, including plant species composition. Out of 6365 fruit bodies, a total of 268 species belonging to 84 genera were found. In general, there was a significant correlation between plant species richness and fungal richness. Variation in vegetation and plant community structure accounted for approximately 20% of variance in fungal community structure. Tree and shrub vegetation played a dominant role in shaping the analyzed fungal communities, both in meadows and surrounding forests, with particular influence on ectomycorrhizal, litter, and lignicolous saprotrophic fungi. Fungal biodiversity in the studied meadows was increased by the presence of tree and shrub species from the adjacent forests, but was reduced by the increasing vegetation cover.  相似文献   

8.
Wood-pastures are threatened anthropogenic biotopes that provide habitat for an extensive group of species. Here we studied the effect of management, grazing intensity, time since abandonment, historical land-use intensity, soil properties and stand conditions on communities of saprotrophic fungi in wood-pastures in Central Finland. We found that the proportion of broadleaved trees and soil pH are the major drivers in the communities of saprotrophic fungi in these boreal wood-pastures. In addition, tree species richness, soil moisture, historical land-use intensity and time since abandonment affected the communities of saprotrophic fungi. Current management or grazing intensity did not have a clear effect on saprotrophic fungal species richness, although dung-inhabiting fungal species richness was highest at intermediate to high grazing intensity. Obviously, there were many more dung-inhabiting fungal species on grazed than on abandoned sites. Our study highlights the conservation value of wood-pastures as hotspots of saprotrophic fungi.  相似文献   

9.
Ongoing climate change in the boreal forests of western North America is associated with wildfires which are increasing in extent and severity, thus impacting mycorrhizal fungal communities through fungal mortality and shifts in host species and age. We planted three native tree species, Picea mariana, Picea glauca, and Populous tremuloides, and non-native Pinus contorta var. latifolia at 22 post-fire sites, encompassing wide variation in fire severity and environmental gradients, across Interior Alaska. We characterized fungal community composition using Illumina MiSeq. Fire severity had a greater impact on fungal composition than the environmental variables we considered. There were large shifts in fungal Phyla and guilds with high severity, but these shifts were dependent on host tree species. We also found pine-specific fungi on Pinus contorta var. latifolia. These data suggest that shifts in mycorrhizal fungal communities from increases in fire severity may be exacerbated by associated changes in plant successional trajectories and host composition.  相似文献   

10.
Exploring the link between above‐ and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well‐recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field‐based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant‐associated effects on soil fungal communities are largely guild‐specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.  相似文献   

11.
With a warming and drying climate, coniferous forests worldwide are increasingly threatened by wildfires. We examined how fire impacts ectomycorrhizal (EM) fungi associated with Pinus ponderosa, an important tree species in western North America. In the biodiverse Madrean Sky Islands, P. ponderosa forests exist on insular mountains separated by arid lands. How do EM fungi in these isolated ranges respond to fire, and can data from individual ranges predict community shifts after fire at a regional scale? By comparing areas in two ranges that experienced moderate fires 12–16 y earlier, and proximate areas in each range without recent fire, we reveal pervasive effects on diversity and composition of EM communities more than a decade after moderate fires occurred. Post-fire differences in EM communities in different ranges highlight the challenge of predicting fungal community shifts in these isolated forests, despite similarities of climate, plant communities, and fire severity.  相似文献   

12.
The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.  相似文献   

13.
Coarse woody debris supports large numbers of saproxylic fungal species. However, most of the current knowledge comes from Scandinavia and studies relating the effect of stand or log characteristics on the diversity and composition of decomposer fungi have not been conducted in Northeastern Canada. Logs from five tree species were sampled along a decomposition gradient in nine stands representing three successional stages of the boreal mixed forest of Northwestern Quebec, Canada. Using a molecular fingerprinting technique, we assessed fungal community Shannon–Weaver diversity index, richness, and composition. We used linear mixed models and multivariate analyses to link changes in fungal communities to log and stand characteristics. We found a total of 33 operational taxonomic units (OTUs) including an indicator species for balsam fir (similar to Athelia sp.) and one found only in aspen stands (similar to Calocera cornea). Spruce logs supported the highest fungal Shannon–Weaver diversity index and OTU number. Our results support the hypothesis that log species influences fungal richness and diversity. However, log decay class does not. Stand composition, volume of coarse woody debris, and log chemical composition were all involved in structuring fungal communities. Maintaining the diversity of wood-decomposing communities therefore requires the presence of dead wood from diverse log species.  相似文献   

14.
Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition.  相似文献   

15.
Understanding the effects of reclamation treatments on plant community development is an important step in setting realistic indicators and targets for reclamation of upland oil sands sites to forest ecosystems. We examine trends in cover, richness, evenness, and community composition for four cover soil types (clay over overburden, clay over tailings sand, peat‐mineral mix over overburden, and peat‐mineral mix over tailings sand) and natural boreal forests over a 20 year period in the mineable oil sands region of northern Alberta, Canada. Tree, shrub, and nonvascular plant species cover showed similar increases over time for all reclamation treatments, with corresponding declines in forb and graminoid cover with time. These trends resemble those in the natural boreal forests of the region and the trajectory of community development for the reclamation treatments appears to follow typical early successional trends for boreal forests. Species richness and diversity of natural forest differed significantly from reclamation treatments. Nonmetric multidimensional scaling ordination and multi‐response permutation procedure revealed that species composition was not affected by reclamation treatment but clearly differed from natural forest. Analysis of species co‐occurrence indicated random plant community assembly following reclamation, in contrast to a higher proportion of nonrandom plant community assembly in natural forests. Thus, reclaimed plant communities appear to be unstructured through year 20 and assembly is still in progress on these reclaimed sites.  相似文献   

16.
17.
Soil fungi play a crucial role in ecosystem functioning and there is increasing evidence that exotic plants invading forests can affect soil fungal communities. We examined potential effects of the invasive plant Impatiens glandulifera on hyphal biomass of ectomycorrhizal fungi, their genetic diversity and the diversity of other soil fungi in deciduous forests in Switzerland. We compared invaded patches with patches where I. glandulifera had been removed, by establishing pairs of 3-m long transect lines at the edge of seven areas of either type. Along the transects we assessed the length of ectomycorrhizal fungal hyphae using the ‘ingrowth mesh bag method’, and used terminal restriction fragment length polymorphism (T-RFLP) analysis to examine fungal genetic diversity. The invasive plant reduced fungal hyphal biomass by 30–80%: the reduction was largest in the centre of the patch. I. glandulifera did not alter fungal richness, but affected the composition of fungal communities. This is probably the result of a decrease of mycorrhizal fungi, coupled with an increase of saprotrophic fungi. Our findings demonstrate the adverse impacts of an annual invasive plant species on both fungal hyphal biomass and the composition of soil fungal communities. This may negatively affect forest nutrient and carbon cycling, soil stability and the functionality of the fungal community, with major consequences for forest ecosystem functioning.  相似文献   

18.
In many semi-natural and natural ecosystems, mycorrhizal fungi are the most abundant and functionally important group of soil micro-organisms. They are almost wholly dependent on their host plants to supply them with photosynthate in return for which they enable the plant to access greater quantities of nutrients. Thus, there is considerable potential for plant communities to regulate the structure and function of mycorrhizal communities. This paper reviews some of the key recent developments that have enabled the influence of plant species richness, composition, and age on mycorrhizal communities in boreal forests and temperate grassland to be determined. It discusses the emerging evidence that, in some situations, plant species richness is related to mycorrhizal species richness, in contrast to previous thinking. The paper also includes some preliminary data on the effect of host stand age on root-associated basidiomycete communities. It concludes by highlighting some of the new methodological advances that promise to unravel the linkages between mycorrhizal diversity and their function in situ.  相似文献   

19.
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.  相似文献   

20.
The trajectory of forests establishing on reclaimed oil sands mines in the Canadian boreal forest is uncertain. Soil microbes, namely mycorrhizal fungi, partly underlie successional trajectories of plant communities, yet their role in restoration is often overlooked. Here, we tested the relative importance of common management tools used in restoration—species planted and soil placement—on the recovery of ectomycorrhizal fungal communities over 4 years. Importantly, we further compared the community assembly of fungi on reclaimed landscapes to that in reference ecosystems disturbed to different degrees. This latter test addresses whether disturbance intensity is more important than common management interventions to restore fungal communities in these ecosystems. Three main findings emerged. (1) The effect of tree species planted and soil placement on ectomycorrhizal fungal communities establishing on reclaimed landscapes was dynamic through time. (2) Disturbances that remove or disrupt the organic layer of soils substantially affect the composition of ectomycorrhizal fungal communities. (3) Shifts in the community composition of ectomycorrhizal fungi were driven to a greater extent by disturbance severity than either tree species planted or soil placement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号