首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

2.
《Global Change Biology》2018,24(6):2325-2338
The role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon‐rich forests that are not in steady‐state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large‐scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66‐year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age−0.52 and 13.20 × Age−0.64 Mg C ha−1 year−1, respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha−1 year−1. Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above‐ and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age‐based parametric equations and time series of mangrove age maps at regional scales.  相似文献   

3.
The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta‐analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure‐C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure‐C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure‐C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure‐C input. Finally, this study emphasizes the need to further document the long‐term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage.  相似文献   

4.
Small‐scale Jatropha cultivation and biodiesel production have the potential of contributing to local development, energy security, and greenhouse gas (GHG) mitigation. In recent years however, the GHG mitigation potential of biofuel crops is heavily disputed due to the occurrence of a carbon debt, caused by CO2 emissions from biomass and soil after land‐use change (LUC). Most published carbon footprint studies of Jatropha report modeled results based on a very limited database. In particular, little empirical data exist on the effects of Jatropha on biomass and soil C stocks. In this study, we used field data to quantify these C pools in three land uses in Mali, that is, Jatropha plantations, annual cropland, and fallow land, to estimate both the Jatropha C debt and its C sequestration potential. Four‐year‐old Jatropha plantations hold on average 2.3 Mg C ha?1 in their above‐ and belowground woody biomass, which is considerably lower compared to results from other regions. This can be explained by the adverse growing conditions and poor local management. No significant soil organic carbon (SOC) sequestration could be demonstrated after 4 years of cultivation. While the conversion of cropland to Jatropha does not entail significant C losses, the replacement of fallow land results in an average C debt of 34.7 Mg C ha?1, mainly caused by biomass removal (73%). Retaining native savannah woodland trees on the field during LUC and improved crop management focusing on SOC conservation can play an important role in reducing Jatropha's C debt. Although planting Jatropha on degraded, carbon‐poor cropland results in a limited C debt, the low biomass production, and seed yield attained on these lands reduce Jatropha's potential to sequester C and replace fossil fuels. Therefore, future research should mainly focus on increasing Jatropha's crop productivity in these degraded lands.  相似文献   

5.
Carbon (C) emission and uptake due to land use and land cover change (LULCC) are the most uncertain term in the global carbon budget primarily due to limited LULCC data and inadequate model capability (e.g., underrepresented agricultural managements). We take the commonly used FAOSTAT‐based global Land Use Harmonization data (LUH2) and a new high‐resolution multisource harmonized national LULCC database (YLmap) to drive a land ecosystem model (DLEM) in the conterminous United States. We found that recent cropland abandonment and forest recovery may have been overestimated in the LUH2 data derived from national statistics, causing previously reported C emissions from land use have been underestimated due to the definition of cropland and aggregated LULCC signals at coarse resolution. This overestimation leads to a strong C sink (30.3 ± 2.5 Tg C/year) in model simulations driven by LUH2 in the United States during the 1980–2016 period, while we find a moderate C source (13.6 ± 3.5 Tg C/year) when using YLmap. This divergence implies that previous C budget analyses based on the global LUH2 dataset have underestimated C emission in the United States owing to the delineation of suitable cropland and aggregated land conversion signals at coarse resolution which YLmap overcomes. Thus, to obtain more accurate quantification of LULCC‐induced C emission and better serve global C budget accounting, it is urgently needed to develop fine‐scale country‐specific LULCC data to characterize the details of land conversion.  相似文献   

6.
Mangroves have been identified as blue carbon ecosystems that are natural carbon sinks. In Bangladesh, the establishment of mangrove plantations for coastal protection has occurred since the 1960s, but the plantations may also be a sustainable pathway to enhance carbon sequestration, which can help Bangladesh meet its greenhouse gas (GHG) emission reduction targets, contributing to climate change mitigation. As a part of its Nationally Determined Contribution (NDC) under the Paris Agreement 2016, Bangladesh is committed to limiting the GHG emissions through the expansion of mangrove plantations, but the level of carbon removal that could be achieved through the establishment of plantations has not yet been estimated. The mean ecosystem carbon stock of 5–42 years aged (average age: 25.5 years) mangrove plantations was 190.1 (±30.3) Mg C ha−1, with ecosystem carbon stocks varying regionally. The biomass carbon stock was 60.3 (±5.6) Mg C ha−1 and the soil carbon stock was 129.8 (±24.8) Mg C ha−1 in the top 1 m of which 43.9 Mg C ha−1 was added to the soil after plantation establishment. Plantations at age 5 to 42 years achieved 52% of the mean ecosystem carbon stock calculated for the reference site (Sundarbans natural mangroves). Since 1966, the 28,000 ha of established plantations to the east of the Sundarbans have accumulated approximately 76,607 Mg C year−1 sequestration in biomass and 37,542 Mg C year−1 sequestration in soils, totaling 114,149 Mg C year−1. Continuation of the current plantation success rate would sequester an additional 664,850 Mg C by 2030, which is 4.4% of Bangladesh's 2030 GHG reduction target from all sectors described in its NDC, however, plantations for climate change mitigation would be most effective 20 years after establishment. Higher levels of investment in mangrove plantations and higher plantation establishment success could contribute up to 2,098,093 Mg C to blue carbon sequestration and climate change mitigation in Bangladesh by 2030.  相似文献   

7.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   

8.
Global recognition of climate change and its predicted consequences has created the need for practical management strategies for increasing the ability of natural ecosystems to capture and store atmospheric carbon. Mangrove forests, saltmarshes and seagrass meadows, referred to as blue carbon ecosystems (BCEs), are hotspots of atmospheric CO2 storage due to their capacity to sequester carbon at a far higher rate than terrestrial forests. Despite increased effort to understand the mechanisms underpinning blue carbon fluxes, there has been little synthesis of how management activities influence carbon stocks and greenhouse gas (GHG) fluxes in BCEs. Here, we present a global meta‐analysis of 111 studies that measured how carbon stocks and GHG fluxes in BCEs respond to various coastal management strategies. Research effort has focused mainly on restoration approaches, which resulted in significant increases in blue carbon after 4 years compared to degraded sites, and the potential to reach parity with natural sites after 7–17 years. Lesser studied management alternatives, such as sediment manipulation and altered hydrology, showed only increases in biomass and weaker responses for soil carbon stocks and sequestration. The response of GHG emissions to management was complex, with managed sites emitting less than natural reference sites but emitting more compared to degraded sites. Individual GHGs also differed in their responses to management. To date, blue carbon management studies are underrepresented in the southern hemisphere and are usually limited in duration (61% of studies <3 years duration). Our meta‐analysis describes the current state of blue carbon management from the available data and highlights recommendations for prioritizing conservation management, extending monitoring time frames of BCE carbon stocks, improving our understanding of GHG fluxes in open coastal systems and redistributing management and research effort into understudied, high‐risk areas.  相似文献   

9.
Mangroves of the semiarid Caatinga region of northeastern Brazil are being rapidly converted to shrimp pond aquaculture. To determine ecosystem carbon stocks and potential greenhouse gas emissions from this widespread land use, we measured carbon stocks of eight mangrove forests and three shrimp ponds in the Acaraú and Jaguaribe watersheds in Ceará state, Brazil. The shrimp ponds were paired with adjacent intact mangroves to ascertain carbon losses and potential emissions from land conversion. The mean total ecosystem carbon stock of mangroves in this semiarid tropical landscape was 413 ± 94 Mg C/ha. There were highly significant differences in the ecosystem carbon stocks between the two sampled estuaries suggesting caution when extrapolating carbon stock across different estuaries even in the same landscape. Conversion of mangroves to shrimp ponds resulted in losses of 58%–82% of the ecosystem carbon stocks. The mean potential emissions arising from mangrove conversion to shrimp ponds was 1,390 Mg CO2e/ha. Carbon losses were largely from soils which accounted for 81% of the total emission. Losses from soils >100 cm in depth accounted for 33% of the total ecosystem carbon loss. Soil carbon losses from shrimp pond conversion are equivalent to about 182 years of soil carbon accumulation. Losses from mangrove conversion are about 10‐fold greater than emissions from conversion of upland tropical dry forest in the Brazilian Caatinga underscoring the potential value for their inclusion in climate change mitigation activities.  相似文献   

10.
The net flux of CO2 exchanged with the atmosphere following grassland‐related land‐use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired‐sites to quantify temporal SOC changes after grassland‐related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post‐LUC time series of SOC data was combined with satellite‐based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long‐term (100 years horizon) cumulative SOC emissions for grassland‐related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland‐related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.  相似文献   

11.
Land‐use change can have significant impacts on soil and aboveground carbon (C) stocks and there is a clear need to identify sustainable land uses which maximize C mitigation potential. Land‐use transitions from agricultural to bioenergy crops are increasingly common in Europe with one option being Short Rotation Forestry (SRF). Research on the impact on C stocks of the establishment of SRF is limited, but given the potential for this bioenergy crop in temperate climates, there is an evident knowledge gap. Here, we examine changes in soil C stock following the establishment of SRF using combined short (30 cm depth) and deep (1 m depth) soil cores at 11 sites representing 29 transitions from agriculture to SRF. We compare the effects of tree species including 9 coniferous, 16 broadleaved and 4 Eucalyptus transitions. SRF aboveground and root biomass were also estimated in 15 of the transitions using tree mensuration data allowing assessments of changes in total ecosystem C stock. Planting coniferous SRF, compared to broadleaved and Eucalyptus SRF, resulted in greater accumulation of litter and overall increased soil C stock relative to agricultural controls. Though broadleaved SRF had no overall effect on soil C stock, it showed the most variable response suggesting species‐specific effects and interactions with soil types. While Eucalyptus transitions induced a reduction in soil C stocks, this was not significant unless considered on a soil mass basis. Given the relatively young age and limited number of Eucalyptus plantations, it is not possible to say whether this reduction will persist in older stands. Combining estimates of C stocks from different ecosystem components (e.g., soil, aboveground biomass) reinforced the accumulation of C under coniferous SRF, and indicates generally positive effects of SRF on whole‐ecosystem C. These results fill an important knowledge gap and provide data for modelling of future scenarios of LUC.  相似文献   

12.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

13.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

14.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

15.
Many assessments of product carbon footprint (PCF) for agricultural products omit emissions arising from land‐use change (LUC). In this study, we developed a framework based on IPCC national greenhouse gas inventory methodologies to assess the impacts of LUC from crop production using oil palm, soybean and oilseed rape as examples. Using ecological zone, climate and soil types from the top 20 producing countries, calculated emissions for transitions from natural vegetation to cropland on mineral soils under typical management ranged from ?4.5 to 29.4 t CO2‐eq ha?1 yr?1 over 20 years for oil palm and 1.2–47.5 t CO2‐eq ha?1 yr?1 over 20 years for soybeans. Oilseed rape showed similar results to soybeans, but with lower maximum values because it is mainly grown in areas with lower C stocks. GHG emissions from other land‐use transitions were between 62% and 95% lower than those from natural vegetation for the arable crops, while conversions to oil palm were a sink for C. LUC emissions were considered on a national basis and also expressed per‐tonne‐of‐oil‐produced. Weighted global averages indicate that, depending on the land‐use transition, oil crop production on newly converted land contributes between ?3.1 and 7.0 t CO2‐eq t oil production?1 yr?1 for palm oil, 11.9–50.6 t CO2‐eq t oil production?1 yr?1 for soybean oil, and 7.7–31.4 t CO2‐eq t oil production?1 yr?1 for rapeseed oil. Assumptions made about crop and LUC distribution within countries contributed up to 66% error around the global averages for natural vegetation conversions. Uncertainty around biomass and soil C stocks were also examined. Finer resolution data and information (particularly on land management and yield) could improve reliability of the estimates but the framework can be used in all global regions and represents an important step forward for including LUC emissions in PCFs.  相似文献   

16.
As part of an integrated energy and climate system, biomass production for bioenergy based on the tropical perennial C4 grass energycane can both offset fossil fuels and store soil carbon (C). We measured energycane yields, root biomass, soil C pools, and soil C stocks in a 4 year field trial and modeled C flow from plants to soils in the surface layer of no‐till energycane planted after more than a century of intensive sugarcane agriculture. Aboveground yields ranged from 16.7 to 19.0 Mg C/ha over the 4 year trial. Although total C stocks did not significantly differ in the surface layer (approx. 0–20 cm) during the study, C in free and occluded light fractions decreased, whereas C in the mineral‐rich dense fraction increased over 4 years. Belowground system inputs, estimated from measurements and informed by convergence in the final soil fraction model, were set to 2.5 Mg C ha?1 year?1. With this input value, we estimated that surface soils retained photosynthetically fixed C predominantly within the mineral‐associated organic matter pool for a mean and median transit time of 177 and 110 years, respectively. Although we did not model C flow to deep soil layers (approx. 0–100 cm), observed C accumulation (11.4 Mg C ha?1 year?1) and root growth down to 120 cm suggest that soil processes and resulting C sequestration at the surface are likely to persist deeper into the soil profile. Energycane, as a strong candidate for climate change mitigation and land degradation remediation, showed high biomass yields and allocation of resources to roots, with sequestered soil C expected to persist for over a century.  相似文献   

17.
Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non‐PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large‐scale disturbances that would release large amounts of carbon in PAs.  相似文献   

18.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   

19.
Soil organic carbon (SOC) is an important carbon pool susceptible to land‐use change (LUC). There are concerns that converting grasslands into the C4 bioenergy crop Miscanthus (to meet demands for renewable energy) could negatively impact SOC, resulting in reductions of greenhouse gas mitigation benefits gained from using Miscanthus as a fuel. This work addresses these concerns by sampling soils (0–30 cm) from a site 12 years (T12) after conversion from marginal agricultural grassland into Miscanthus x giganteus and four other novel Miscanthus hybrids. Soil samples were analysed for changes in below‐ground biomass, SOC and Miscanthus contribution to SOC (using a 13C natural abundance approach). Findings are compared to ECOSSE soil carbon model results (run for a LUC from grassland to Miscanthus scenario and continued grassland counterfactual), and wider implications are considered in the context of life cycle assessments based on the heating value of the dry matter (DM) feedstock. The mean T12 SOC stock at the site was 8 (±1 standard error) Mg C/ha lower than baseline time zero stocks (T0), with assessment of the five individual hybrids showing that while all had lower SOC stock than at T0 the difference was only significant for a single hybrid. Over the longer term, new Miscanthus C4 carbon replaces pre‐existing C3 carbon, though not at a high enough rate to completely offset losses by the end of year 12. At the end of simulated crop lifetime (15 years), the difference in SOC stocks between the two scenarios was 4 Mg C/ha (5 g CO2‐eq/MJ). Including modelled LUC‐induced SOC loss, along with carbon costs relating to soil nitrous oxide emissions, doubled the greenhouse gas intensity of Miscanthus to give a total global warming potential of 10 g CO2‐eq/MJ (180 kg CO2‐eq/Mg DM).  相似文献   

20.
Global vegetated coastal habitats (VCHs) represent a large sink for organic carbon (OC) stored within their soils. The regional patterns and causes of spatial variation, however, remain uncertain. The sparsity and regional bias of studies on soil OC stocks from Chinese VCHs have limited the reliable estimation of their capacity as regional and global OC sinks. Here, we use field and published data from 262 sampled soil cores and 181 surface soils to report estimates of soil OC stocks, burial rates and losses of VCHs in China. We find that Chinese mangrove, salt marsh and seagrass habitats have relatively low OC stocks, storing 6.3 ± 0.6, 7.5 ± 0.6, and 1.6 ± 0.6 Tg C (±95% confidence interval) in the top meter of the soil profile with burial rates of 44 ± 17, 159 ± 57, and 6 ± 45 Gg C/year, respectively. The variability in the soil OC stocks is linked to biogeographic factors but is mostly impacted by sedimentary processes and anthropic activities. All habitats have experienced significant losses, resulting in estimated emissions of 94.2–395.4 Tg CO2e (carbon dioxide equivalent) over the past 70 years. Reversing this trend through conservation and restoration measures has, therefore, great potential in contributing to the mitigation of climate change while providing additional benefits. This assessment, on a national scale from highly sedimentary environments under intensive anthropogenic pressures, provides important insights into blue carbon sink mechanism and sequestration capacities, thus contributing to the synchronous progression of global blue carbon management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号