首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoarthritis (OA) is a common degenerative disease characterized by the progressive destruction both articular cartilage and the subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone loss are crucial for the prevention and treatment of OA. Oxymatrine (OMT) is a natural compound with anti‐inflammatory and antitumour properties. We found that OMT exhibited a strong inhibitory effect on LPS‐induced chondrocyte inflammation and catabolism. To further support our results, fresh human cartilage explants were treated with LPS to establish an ex vivo degradation model, and the results revealed that OMT inhibited the catabolic events of LPS‐stimulated human cartilage and substantially attenuated the degradation of articular cartilage ex vivo. As subchondral bone remodelling is involved in OA progression, and osteoclasts are a unique cell type in bone resorption, we investigated the effects of OMT on osteoclastogenesis, and the results demonstrated that OMT suppresses RANKL‐induced osteoclastogenesis by suppressing the RANKL‐induced NFATc1 and c‐fos signalling pathway in vitro. Further, we found that the anti‐inflammatory and anti‐osteoclastic effects of oxymatrine are mediated via the inhibition of the NF‐κB and MAPK pathways. In animal studies, OMT suppressed the ACLT‐induced cartilage degradation, and TUNEL assays further confirmed the protective effect of OMT on chondrocyte apoptosis. MicroCT analysis revealed that OMT had an attenuating effect on ACLT‐induced subchondral bone loss in vivo. Taken together, these results show that OMT interferes with the vicious cycle associated with OA and may be a potential therapeutic agent for abnormal subchondral bone loss and cartilage degradation in osteoarthritis.  相似文献   

2.
Articular cartilage damage and chondrocyte apoptosis are common features of rheumatoid arthritis and osteoarthritis. Recently, curcumin has been reported to exhibit protective effects on degeneration in articular cartilage diseases. However, the effects and mechanisms of curcumin on articular chondrocyte injury remain to be elucidated. The aim of the present study is to investigate the chondroprotective mechanisms of curcumin on interleukin-1β (IL-1β)-induced chondrocyte apoptosis in vitro. The results revealed that IL-1β decreased cell viability and induced apoptosis in primary articular chondrocytes. Curcumin pretreatment reduced IL-1β-induced articular chondrocyte apoptosis. In addition, treatment with curcumin increased autophagy in articular chondrocytes and protected against IL-1β-induced apoptosis. The curcumin-mediated protection against IL-1β induced apoptosis was abolished when cells were treated with the autophagy inhibitor 3-methyladenine or transfected with Beclin-1 small interfering RNA. Furthermore, IL-1β stimulation significantly increased the phosphorylation levels of nuclear factor (NF)-κB p65 and glycogen synthase kinase-3β, and decreased the phosphorylation levels of β-catenin in articular chondrocytes, and these alterations to the phosphorylation levels were partly reversed by treatment with curcumin. Dual-luciferase and electrophoretic mobility shift assays demonstrated that IL-1β increased NF-κB p65 promoter activity in chondrocytes, and this was also reversed by curcumin. Pretreatment with the NF-κB inhibitor pyrrolidine dithiocarbamate enhanced the protective effects of curcumin on chondrocyte apoptosis, but Wnt/β-catenin inhibitor, XAV-939, did not exhibit this effect. Molecular docking and dynamic simulation studies results showed that curcumin could bound to RelA (p65) protein. These results indicate that curcumin may suppress IL-1β-induced chondrocyte apoptosis through activating autophagy and restraining NF-κB signaling pathway.  相似文献   

3.
Endothelial dysfunction induced by bubbles plays an important role in decompression sickness (DCS), but the mechanism of which has not been clear. The present study was to investigate the role of autophagy in bubble‐induced endothelial injury. Human umbilical vein endothelial cells (HUVECs) were treated with bubbles, autophagy markers and endothelial injury indices were determined, and relationship strengths were quantified. Effects of autophagy inhibitor 3‐methyladenine (3‐MA) were observed. Bubble contact for 1, 5, 10, 20 or 30 minutes induced significant autophagy with increases in LC3‐II/I ratio and Beclin‐1, and a decrease in P62, which correlated with bubble contact duration. Apoptosis rate, cytochrome C and cleaved caspase‐3 increased, and cell viability decreased following bubble contact for 10, 20 or 30 minutes, but not for 1 or 5 minutes. Injuries in HUVECs were correlated with LC3‐II/I ratio and partially reversed by 3‐MA in 10, 20 or 30 minutes contact, but worsened in 1 or 5 minutes. Bubble pre‐conditioning for 1 minutes resulted in increased cell viability and decreased apoptosis rate compared with no pre‐conditioning, and 30‐minutes pre‐conditioning induced opposing changes, all of which were inhibited by 3‐MA. In conclusion, autophagy was involved and played a biphasic role in bubble‐induced endothelial injury.  相似文献   

4.
The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
ASPP2 is a pro‐apoptotic member of the p53 binding protein family. ASPP2 has been shown to inhibit autophagy, which maintains energy balance in nutritional deprivation. We attempted to identify the role of ASPP2 in the pathogenesis of non‐alcoholic fatty liver disease (NAFLD). In a NAFLD cell model, control treated and untreated HepG2 cells were pre‐incubated with GFP‐adenovirus (GFP‐ad) for 12 hrs and then treated with oleic acid (OA) for 24 hrs. In the experimental groups, the HepG2 cells were pre‐treated with ASPP2‐adenovirus (ASPP2‐ad) or ASPP2‐siRNA for 12 hrs and then treated with OA for 24 hrs. BALB/c mice fed a methionine‐ and choline‐deficient (MCD) diet were used to generate a mouse model of NAFLD. The mice with fatty livers in the control group were pre‐treated with injections of GFP‐ad for 10 days. In the experimental group, the mice that had been pre‐treated with ASPP2‐ad were fed an MCD diet for 10 days. ASPP2‐ad or GFP‐ad was administered once every 5 days. Liver tissue from fatty liver patients and healthy controls were used to analyse the role of ASPP2. Autophagy, apoptosis markers and lipid metabolism mediators, were assessed with confocal fluorescence microscopy, immunohistochemistry, western blot and biochemical assays. ASPP2 overexpression decreased the triglyceride content and inhibited autophagy and apoptosis in the HepG2 cells. ASPP2‐ad administration suppressed the MCD diet‐induced autophagy, steatosis and apoptosis and decreased the previously elevated alanine aminotransferase levels. In conclusion, ASPP2 may participate in the lipid metabolism of non‐alcoholic steatohepatitis and attenuate liver failure.  相似文献   

6.
Lee SW  Song YS  Lee SY  Yoon YG  Lee SH  Park BS  Yun I  Choi H  Kim K  Chung WT  Yoo YH 《PloS one》2011,6(4):e19163
Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF)-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA) model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence versus a cause of the degeneration in vivo.  相似文献   

7.
This study is carried out to investigate the role of microRNA-26a (miR-26a) in cartilage injury and chondrocyte proliferation and apoptosis in rats with rheumatoid arthritis (RA) by regulating expression of CTGF. A rat model of RA induced by type II collagen was established. The rats were assigned into normal, RA, RA + mimics negative control (NC), and RA + miR-26a mimics groups, and the cells were classified into blank, mimics NC, and miR-26a mimics groups. The degree of secondary joint swelling and arthritis index, expression of miR-26a, pathological changes, proliferation and apoptosis of chondrocytes, and expression of CTGF, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α, Bax, and Bcl-2 were also determined through a series of experiments. The targeting relationship between miR-26a and CTGF was verified. Initially, downregulated miR-26a was found in cartilage tissues and inflammatory articular chondrocytes of RA rats. In addition, CTGF was determined as a direct target gene of miR-26a, and upregulation of miR-26a inhibited CTGF expression in cartilage tissues of RA rats. Furthermore, upregulation of miR-26a reduced swelling and inflammation of joints, inhibited cartilage damage, apoptosis of chondrocytes, inflammatory injury, promotes proliferation, and inhibited apoptosis of inflammatory articular chondrocytes, which may be correlated with the targeting inhibition of CTGF expression. Collectively, the results demonstrate that upregulating the expression of miR-26a could attenuate cartilage injury, stimulate the proliferation, and inhibit apoptosis of chondrocytes in RA rats.  相似文献   

8.
Spermidine has therapeutic effects in many diseases including as heart diastolic function, myopathic defects and neurodegenerative disorders via autophagy activation. Autophagy has been found to mitigate cell apoptosis in intervertebral disc degeneration (IDD). Accordingly, we theorize that spermidine may have beneficial effects on IDD via autophagy stimulation. In this study, spermidine's effect on IDD was evaluated in tert‐butyl hydroperoxide (TBHP)‐treated nucleus pulposus cells of SD rats in vitro as well as in a puncture‐induced rat IDD model. We found that autophagy was actuated by spermidine in nucleus pulposus cells. In addition, spermidine treatment weakened the apoptotic effects of TBHP in nucleus pulposus cells. Spermidine increased the expression of anabolic proteins including Collagen‐II and aggrecan and decreased the expression of catabolic proteins including MMP13 and Adamts‐5. Additionally, autophagy blockade using 3‐MA reversed the beneficial impact of spermidine against nucleus pulposus cell apoptosis. Autophagy was thus important for spermidine's therapeutic effect on IDD. Spermidine‐treated rats had an accentuated T2‐weighted signal and a diminished histological degenerative grade than vehicle‐treated rats, showing that spermidine inhibited intervertebral disc degeneration in vivo. Thus, spermidine protects nucleus pulposus cells against apoptosis through autophagy activation and improves disc, which may be beneficial for the treatment of IDD.  相似文献   

9.
In our previous studies, we reported that myeloid differentiation protein 1 (MD1) serves as a negative regulator in several cardiovascular diseases. However, the role of MD1 in heart failure with preserved ejection fraction (HFpEF) and the underlying mechanisms of its action remain unclear. Eight‐week‐old MD1‐knockout (MD1‐KO) and wild‐type (WT) mice served as models of HFpEF induced by uninephrectomy, continuous saline or d‐aldosterone infusion and a 1.0% sodium chloride treatment in drinking water for 4 weeks to investigate the effect of MD1 on HFpEF in vivo. H9C2 cells were treated with aldosterone to evaluate the role of MD1 KO in vitro. MD1 expression was down‐regulated in the HFpEF mice; HFpEF significantly increased the levels of intracellular reactive oxygen species (ROS) and promoted autophagy; and in the MD1‐KO mice, the HFpEF‐induced intracellular ROS and autophagy effects were significantly exacerbated. Moreover, MD1 loss activated the p38‐MAPK pathway both in vivo and in vitro. Aldosterone‐mediated cardiomyocyte autophagy was significantly inhibited in cells pre‐treated with the ROS scavenger N‐acetylcysteine (NAC) or p38 inhibitor SB203580. Furthermore, inhibition with the autophagy inhibitor 3‐methyladenine (3‐MA) offset the aggravating effect of aldosterone‐induced autophagy in the MD1‐KO mice and cells both in vivo and in vitro. Our results validate a critical role of MD1 in the pathogenesis of HFpEF. MD1 deletion exaggerates cardiomyocyte autophagy in HFpEF via the activation of the ROS‐mediated MAPK signalling pathway.  相似文献   

10.
Osteoarthritis (OA) is the most common age-related joint disease characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral sclerosis. Accumulating evidence suggests that circular RNAs (circRNAs) play key roles in OA, but the function of circSLTM in OA remains greatly unknown. Therefore, this study focused on interleukin-1β (IL-1β)-treated primary human chondrocytes as well as a rat model to investigate the expression pattern and functional role of circSLTM in OA in vitro and in vivo. CircSLTM and high mobility group protein B2 (HMGB2) were upregulated in IL-1β-induced chondrocytes, whereas miR-421 was downregulated. Knockdown of circSLTM or overexpression of miR-421 ameliorated IL-1β-induced chondrocyte apoptosis and inflammation. The regulatory relationship between circSLTM and miR-421, as well as that between miR-421 and HMGB2, was predicted by bioinformatics and then verified by the RNA immunoprecipitation experiment and dual-luciferase reporter gene assay. Furthermore, silencing of circSLTM increased cartilage destruction and decreased cartilage tissue apoptosis rate and inflammation in a rat model of OA. Taken together, our findings demonstrate the fundamental role of circSLTM in OA progression and provide a potential molecular target for OA therapy.  相似文献   

11.
High concentrations of cryoprotective agents (CPA) are required during articular cartilage cryopreservation but these CPAs can be toxic to chondrocytes. Reactive oxygen species have been linked to cell death due to oxidative stress. Addition of antioxidants has shown beneficial effects on chondrocyte survival and functions after cryopreservation. The objectives of this study were to investigate (1) oxidative stress experienced by chondrocytes and (2) the effect of antioxidants on cellular reactive oxygen species production during articular cartilage exposure to high concentrations of CPAs. Porcine cartilage dowels were exposed to a multi-CPA solution supplemented with either 0.1 mg/mL chondroitin sulfate or 2000 μM ascorbic acid, at 4 °C for 180 min (N = 7). Reactive oxygen species production was measured with 5 μM dihydroethidium, a fluorescent probe that targets reactive oxygen species. The cell viability was quantified with a dual cell membrane integrity stain containing 6.25 μM Syto 13 + 9 μM propidium iodide using confocal microscopy. Supplementation of CPA solutions with chondroitin sulfate or ascorbic acid resulted in significantly lower dihydroethidium counts (p < 0.01), and a lower decrease in the percentage of viable cells (p < 0.01) compared to the CPA-treated group without additives. These results indicated that reactive oxygen species production is induced when articular cartilage is exposed to high CPA concentrations, and correlated with the amount of dead cells. Both chondroitin sulfate and ascorbic acid treatments significantly reduced reactive oxygen species production and improved chondrocyte viability when articular cartilage was exposed to high concentrations of CPAs.  相似文献   

12.
13.
The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy-pertrophy.  相似文献   

14.
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA.  相似文献   

15.
Osteoarthritis (OA) is the most common chronic joint disease in the elderly population. Growing evidence indicates that a balance between autophagy and apoptosis in chondrocytes plays a key role in OA’s cartilage degradation. Thus, drugs targeting the balance between apoptosis and autophagy are potential therapeutic approaches for OA treatment. In previous studies, we found that the activation of α7 nicotinic acetylcholine receptors (α7-nAChRs) alleviated monosodium iodoacetate (MIA)-induced joint degradation and osteoarthritis pain. To explore the potential functions of α7-nAChRs in autophagy and apoptosis signaling in knee OA, we compared the expression of α7-nAChRs in human knee articular cartilage tissues from normal humans and OA patients. We found that knee joint cartilage tissues of OA patients showed decreased α7-nAChRs and an imbalance between autophagy and apoptosis. Next, we observed that α7-nAChRs deficiency did not affect cartilage degradation in OA development but reversed the beneficial effects of nicotine on mechanical allodynia, cartilage degradation, and an MIA-induced switch from autophagy to apoptosis. Unlike in vivo studies, we found that primary chondrocytes from α7-nAChRs knockout (KO) mice showed decreased LC3 levels under normal conditions and were more sensitive toward MIA-induced apoptosis. Finally, we found that α7-nAChRs deficiency increased the phosphorylation of mTOR after MIA treatment, which can also be observed in OA patients’ tissues. Thus, our findings not only confirmed that nicotine alleviated MIA-induced pain behavior and cartilage degradation via stimulating the α7-nAChRs/mTOR signal pathway but found the potential role of α7-nAChRs in mediating the balance between apoptosis and autophagy.Subject terms: Autophagy, Apoptosis  相似文献   

16.
Impaired mitochondrial function is a key factor attributing to lung ischaemia‐reperfusion (IR) injury, which contributes to major post‐transplant complications. Thus, the current study was performed to investigate the role of mitochondrial autophagy in lung I/R injury and the involvement of the mTOR pathway. We established rat models of orthotopic left lung transplantation to investigate the role of mitochondrial autophagy in I/R injury following lung transplantation. Next, we treated the donor lungs with 3‐MA and Rapamycin to evaluate mitochondrial autophagy, lung function and cell apoptosis with different time intervals of cold ischaemia preservation and reperfusion. In addition, mitochondrial autophagy, and cell proliferation and apoptosis of pulmonary microvascular endothelial cells (PMVECs) exposed to hypoxia‐reoxygenation (H/R) were monitored after 3‐MA administration or Rapamycin treatment. The cell apoptosis could be inhibited by mitochondrial autophagy at the beginning of lung ischaemia, but was rendered out of control when mitochondrial autophagy reached normal levels. After I/R of donor lung, the mitochondrial autophagy was increased until 6 hours after reperfusion and then gradually decreased. The elevation of mitochondrial autophagy was accompanied by promoted apoptosis, aggravated lung injury and deteriorated lung function. Moreover, the suppression of mitochondrial autophagy by 3‐MA inhibited cell apoptosis of donor lung to alleviate I/R‐induced lung injury as well as inhibited H/R‐induced PMVEC apoptosis, and enhanced its proliferation. Finally, mTOR pathway participated in I/R‐ and H/R‐mediated mitochondrial autophagy in regulation of cell apoptosis. Inhibition of I/R‐induced mitochondrial autophagy alleviated lung injury via the mTOR pathway, suggesting a potential therapeutic strategy for lung I/R injury.  相似文献   

17.
microRNA (miR) has been shown to be involved in the treatment of diseases such as osteoarthritis (OA). This study aims to investigate the role of miR-206 in regulating insulin-like growth factor-1 (IGF-1) in chondrocyte autophagy and apoptosis in an OA rat model via the phosphoinositide 3-kinase (P13K)/protein kinase B (AKT)-mechanistic target of rapamycin (mTOR) signaling pathway. Wistar rats were used to establish the OA rat model, followed by the observation of histopathological changes, Mankin score, and the detection of IGF-1-positive expression and tissue apoptosis. The underlying regulatory mechanisms of miR-206 were analyzed in concert with treatment by an miR-206 mimic, an miR-206 inhibitor, or small interfering RNA against IGF-1 in chondrocytes isolated from OA rats. Then, the expression of miR-206, IGF-1, and related factors in the signaling pathway, cell cycle, and apoptosis, as well as inflammatory factors, were determined. Subsequently, chondrocyte proliferation, cell cycle distribution, apoptosis, autophagy, and autolysosome were measured. OA articular cartilage tissue exhibited a higher Mankin score, promoted cell apoptotic rate, increased expression of IGF-1, Beclin1, light chain 3 (LC3), Unc-51-like autophagy activating kinase 1 (ULK1), autophagy-related 5 (Atg5), caspase-3, and Bax, yet exhibited decreased expression of miR-206, P13K, AKT, mTOR, and Bcl-2. Besides, miR-206 downregulated the expression of IGF-1 and activated the P13K/AKT signaling pathway. Moreover, miR-206 overexpression and IGF-1 silencing inhibited the interleukins levels (IL-6, IL-17, and IL-18), cell apoptotic rate, the formation of autolysosome, and cell autophagy while promoting the expression of IL-1β and cell proliferation. The findings from our study provide a basis for the efficient treatment of OA by investigating the inhibitory effects of miR-206 on autophagy and apoptosis of articular cartilage in OA via activating the IGF-1-mediated PI3K/AKT-mTOR signaling pathway.  相似文献   

18.
19.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang‐Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin‐induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin‐induced autophagy had interference on the process of apoptosis. Wogonin‐induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)‐stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin‐mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V‐positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin‐mediated apoptosis, whereas inhibition of autophagy by 3‐methyladenine (3‐MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI3K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin‐induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin‐induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. J. Cell. Biochem. 113: 3476–3485, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号