首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Carbon addition has been proposed as an alternative to herbicide and manual removal methods to treat non‐native plants and reduce non‐target effects of treatments (e.g. impacts on native plants; surface disturbance). On Mojave Desert pavement and biocrust substrates after experimental soil disturbance and carbon addition (1,263 g C/m2 as sucrose), we observed declines in lichens and moss cover in sucrose‐treated plots. To further explore this unforeseen potential side effect of using carbon addition as a non‐native plant treatment, we conducted biocrust surveys 5 and 7 years after treatments, sampled surface soils to observe if treatments additionally affected soil filamentous cyanobacteria, and conducted laboratory trials testing the effects of different levels of sucrose on cyanobacteria and desert mosses. Sucrose addition to biocrust plots reduced lichen and moss cover by 33–78% and species richness by 40–80%. Sucrose reduced biocrust cover in biocrust plots to levels similarly detected in pavement plots (<1%). While cyanobacteria in the field did not appear to be affected by sucrose, laboratory tests showed negative effects of sucrose on both cyanobacteria and mosses. Cyanobacteria declined by 41% 1 month after exposure to 5.4 g C/m2 equivalent solutions. We detected injury to photosynthesis in mosses after 96 hour exposure to 79–316 g C/m2 equivalent solutions. Caution is warranted when using carbon addition, at least in the form and concentration of sucrose, as a treatment for reducing non‐native plants on sites where conserving biocrust is a goal.  相似文献   

2.
《Acta Oecologica》1999,20(3):159-170
The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens (Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.  相似文献   

3.
We examined the dynamics of cryptogamic soil crusts in a derived (disclimax) grassland near Orange in southeastern Australia. Changes in the cover of cryptogamic crusts and floristics and abundance of the constituent species were measured on four treatments with two levels each of grazing and cultivation. Twenty‐two lichens, mosses and liverworts were found at the study site and, of these, 13 were collected in the quadrats. Three moss species (Barbula calycina, Eccremidium arcuatum and Bryum pachytheca) and one lichen species (Cladonia tessalata) accounted for 67% of total cover‐abundance scores. Generally, cover‐abundance was significantly higher in the unvegetated microsites than in the vegetated microsites. Species richness was not significantly different between the four grazing‐cultivation treatments but, on average, there were significantly more species in the unvegetated microsites (mean = 3.2 species) than in the vegetated microsites (0.54 species). Grazing and cultivation resulted in significantly greater cover of bare ground and consequently significantly greater crust cover. Averaged across all treatments, approximately half of the area of unvegetated soil was occupied by cryptogams. Overall, the results indicate that lichens and bryophytes are important components of derived temperate grasslands, surviving in even densely vegetated swards. This study suggests that strategies which disturb the soil surface (e.g. grazing and cultivation) will stimulate the abundance and cover of soil crust organisms by increasing the availability of unvegetated microsites.  相似文献   

4.
The diversity of bryophyte and lichen collections in 9 of the oldest preserved herbaria (dating from ca 1542 to 1577) was compared, including the first reports of bryophytes and lichens from the ‘En Tibi’ herbarium (possibly 1542–1544) and the herbarium of Leonhard Rauwolf (1560–1563). Bryophytes and lichens formed only a minority in each herbarium compared to the numbers of vascular plant specimens; numbers ranged from representatives of 21 genera in the herbarium of Ulisse Aldrovandi to the single genus Conocephalum in the Rauwolf herbarium. The focus was on large, handsome species of bryophytes and macrolichens, apart from small amounts of additional species collected as ‘by-catch’ in mixed collections. All herbaria together included 34 genera of bryophytes (36 species and 10 specimens identified to genus level) and 13 genera of lichens (24 species and 4 specimens identified to genus level). The diversity of mosses was higher than that of liverworts, and pleurocarpous mosses were more diverse than acrocarpous mosses. The collectors probably aimed at selecting material that was either characteristic of the vegetation in the respective areas of collecting or used for certain purposes (or both). The former hypothesis is supported by the small overlap in taxonomic diversity between the herbaria, and the latter by the fact that several moss, liverwort, and lichen genera are included whose traditional uses are well documented.  相似文献   

5.
Question: What determines the balance between the cover values of vascular plants, lichens and mosses in dry calcareous grassland communities? Location: Western Estonia. Methods: A five‐year (2001–2005) study was conducted in a dry calcareous grassland. The cover of mosses, lichens and vascular plants and all moss species was recorded in permanent plots. Vascular plants were cut in half of the plots. Data from a nearby weather station were used to calculate mean values of different weather parameters and a summer moisture index for the study years. Results: Significant differences in cover values between years were found. The fluctuations of total moss cover and the cover of the dominating moss species Ctenidium molluscum followed changes in annual precipitation. Both cover values were highest in years with high precipitation. The cover change of vascular plants was best characterized by the moisture index of the growth period (three summer months). Summers with high moisture indexes facilitated vascular plant and lichen growth. Annual precipitation and the cover of mosses had a negative influence on the cover of vascular plants. The cutting of vascular plants did not have a significant effect on moss and lichen cover. Conclusions: 1. On dry calcareous grasslands the growth of mosses is enhanced by high annual precipitation, while the growth of vascular plants and lichens is influenced rather by the high summer moisture index. The cover of vascular plants is inhibited by the large moss cover. 2. Mowing of vascular plants does not influence the cover of mosses and lichens.  相似文献   

6.

Background and aims

Functional traits are promising indicators of global changes and ecosystem processes. Trait responses to environmental conditions have been examined widely in vascular plants. In contrast, few studies have focused on soil lichens and mosses composing biocrusts. We aimed to evaluate the potential of biocrust tissue traits as indicators of changes in climate and soil properties.

Methods

Isotope ratios and nutrient content in biocrust tissue were analyzed in 13 Mediterranean shrublands along an aridity gradient. Differences in tissue traits between biocrust groups (lichens and mosses), and relationships between tissue traits and climatic and soil variables were examined.

Results

Lichens and mosses differed in δ13C, δ15N and N content, indicating distinct physical and physiological attributes. Tissue traits correlated strongly with numerous climatic variables, likely due to a modulator effect on biocrust water relations and metabolism. We found contrasting responses of lichen and moss traits to climate, although they responded similarly to soil properties. Overall, the most responsive trait was δ15N, suggesting this trait is the best to reflect integrated processes occurring in the atmosphere and soil.

Conclusions

Biocrust tissue traits arise as cost-effective, integrative ecological indicators of global change drivers in Mediterranean ecosystems, with potential applications in response-effect trait frameworks.
  相似文献   

7.
Tree hollows often harbor animals and microorganisms, thereby storing nutritive resources derived from their biological activities. The outflows from tree hollows can create unique microenvironments, which may affect communities of epiphytic organisms on trunk surfaces below the hollows. In this study, we tested whether the species richness and composition of epiphytic bryophytes (liverworts and mosses) and lichens differ above and below tree hollows of Aria japonica and Cercidiphyllum japonicum in a Japanese temperate forest. The species richness of epiphytic bryophytes and lichens did not differ above and below hollows; however, the species composition of bryophytes differed significantly above and below hollows. Indicator species analyses showed that the moss species Anomodon tristis and the liverwort species Porella vernicosa were significantly more common below than above hollows, while the liverwort species Radula japonica and four lichen species, including Leptogium cyanescens, occurred more frequently above than below hollows. Our results highlight that tree hollows can produce unique microenvironments on trunk surfaces that potentially contribute to the maintenance of epiphytic diversity on a local scale.  相似文献   

8.
Biological soil crusts (biocrusts) are crucial components of dryland ecosystems, but they are slow to recover following disturbance. Herein, we evaluated several methods for restoring lichen‐moss biocrusts that included factorial applications of moss fragments in a water‐slurry (1) with and without lichen fragments (to restore biocrust taxonomic structure), (2) with and without clay (to facilitate establishment), and (3) with and without jute ground cloth (to facilitate establishment). Three and four years after inoculation, moss and lichen cover was up to five and eight times higher on jute ground cloth than on bare ground, respectively. Lichen cover was six times higher in plots where lichen fragments were added. Clay amendments did not increase moss or lichen establishment. To understand the effects of biocrust recovery on soil properties, we measured soil inorganic nitrogen, microbial biomass carbon, and soil water availability in restoration and control plots. Restored biocrusts decreased inorganic NH4‐N availability by 67% when compared to controls 3 years after inoculation, but did not influence the availability of inorganic NO3‐N, soil water, or microbial biomass carbon. Our results demonstrate that adding a biocrust inoculant to jute ground cloth can expedite recovery of lichen‐moss biocrust and reestablish its influence on soil properties within a few years.  相似文献   

9.
Abstract We describe the regional species richness, variation in species richness and species turnover of bryophytes and lichens from 36 sites in lowland forests of southeastern Australia. The analyses subdivided the two major taxa into their constituent sub-groups: mosses, liverworts, and crustose, fruticose and foliose lichens. They also explored correlations between selected environmental variables and patterns of diversity. On a regional scale, there were 77 species of bryophytes and 69 species of lichens, giving a total of approximately one-third of the total number of vascular plant species in the region. Mean species richness was higher for lichens than bryophytes. Also, the two taxa were negatively correlated because lichens favoured dry sites and bryophytes favoured moist ones. Species turnover was greater for bryophytes than lichens, largely due to the distribution of liverwort species. Foliose lichens showed higher levels of turnover than crustose lichens. Multiple regression and canonical correspondence analysis showed that both taxa and all sub-groups responded to the same three variables: vascular plant cover, time since last fire and topographic position. Other variables, including time since logging and intensity of logging, explained little variation in bryophyte or lichen diversity. The data suggest that the strategies for the conservation of bryophyte and lichen biodiversity will be different, to reflect the different patterns of species richness and species turnover.  相似文献   

10.
《Journal of bryology》2013,35(2):71-87
Abstract

We classified 747 species of British and Irish mosses into 10 clusters, based on their recorded distribution in 10×10 km grid squares (hectads). We generated the clusters in a two-stage process using the CLUSTASPEC program, the method that we had earlier used for British and Irish liverworts and hornworts. The clusters are named after the species with distributions which are most similar to those of the clusters as a whole. Clusters of widespread species (Bryum capillare), southern, lowland species (Rhynchostegium confertum), widespread calcifuges (Pleurozium schreberi), upland species (Blindia acuta), and montane calcifuges (Kiaeria falcata) closely match clusters recognised in the liverworts. The remaining clusters (Tortella flavovirens, Weissia longifolia, Mnium stellare, Encalypta alpina, Mnium lycopodioides) are less similar. The classification of mosses into 15 and 20 clusters generates additional clusters of hyperoceanic and montane mosses which also resemble liverwort clusters. The influence of calcareous bedrock has a more marked effect in determining moss distributions and, unlike the liverworts, the 10 moss clusters include one which is predominantly coastal. Mosses tend to be a less upland group than liverworts; a smaller proportion of their species have northern and western distributions and the lowland clusters are characterised by more extreme environmental conditions. As with the liverworts, geographically restricted clusters of species with predominantly Mediterranean-Atlantic, Arctic-montane and Boreo-arctic Montane world ranges include marked concentrations of threatened species, and species which are not recorded as fruiting in the British Isles.  相似文献   

11.
Sedia EG  Ehrenfeld JG 《Oecologia》2005,144(1):137-147
In the New Jersey Pinelands, severely disturbed areas often do not undergo a rapid succession to forest; rather, a patchy cover of lichens, mosses and grasses persists for decades. We hypothesized that these plant covers affect soil microbial processes in different ways, and that these effects may alter the successional dynamics of the patches. We predicted that the moss and grass covers stimulate soil microbial activity, whereas lichens inhibit it, which may in turn inhibit succession. We collected soil cores from beneath each type of cover plus bare soil within two types of highly disturbed areas—sites subjected to hot wildfires, and areas mined for sand. Organic matter (OM) content, soil respiration and potential N mineralization were measured in the cores. Soils under mosses were similar to those under grasses; they accumulated more OM and produced more mineral N, predominantly in the form of ammonium, than either the bare soils or the soils beneath lichens. Mineralization under lichens, like that of the bare soils but unlike the soils beneath mosses or grasses, was dominated by net nitrification. These patterns were reproduced in experimentally transplanted moss and lichen mats. Mosses appear to create high-nutrient microsites via high rates of OM accumulation and production of ammonium, whereas lichens maintain low-nutrient patches similar to bare soil via low OM accumulation rates and production of mineral N predominantly in the mobile nitrate form. These differences in soil properties may explain the lack of vascular plant invasion in lichen mats, in contrast to the moss-dominated areas.  相似文献   

12.
Biological soil crusts (biocrusts) are a key component of dryland ecosystems worldwide. However, large extensions of biocrusts are disturbed by human activities, gypsum quarry being an outstanding example. Restoration techniques applied have offered satisfactory results for vascular plants but they could greatly differ in promoting biocrust recovery. A basic question remains unaddressed: can measures for plant recovery accelerate or promote the recovery of biological crusts? We have examined eight different situations: undisturbed natural habitat, five treatments with no restoration measures (overgrazed area, abandoned quarry, topsoil removal from natural habitat, and two areas filled with gypsum mining spoil), and 2 areas receiving restoration measures (manual sowing and hydroseeding). We took 40 soil cores to determine cover of lichen, moss, and cyanobacteria. Biocrust richness and cover were higher in the undisturbed habitat, with remarkable differences for the different components among treatments. Cyanobacteria were well represented in all the cores (restored and non‐restored). Mosses were promoted the most by hydroseeding. Lichen cover was remarkably higher in undisturbed samples, very low in the quarry abandoned in 1992, and 0 in the rest. Complete spontaneous recovery of biocrusts was inefficient in the 25‐year period examined. Plant restoration measures could speed up its recovery comparing with non‐restored areas. Cyanobacteria and mosses can spontaneously recover fairly well. However, promoting them would accelerate the appearance of lichen. For lichen, inoculation or translocation of lichen thalli might be proposed. Therefore, our results call for the inclusion of active restoration measures of biocrust components in recovery plans, especially for lichens.  相似文献   

13.
Manuela Zamfir 《Oikos》2000,88(3):603-611
Emergence of seedlings of four alvar grassland species ( Arenaria serpyllifolia , Festuca ovina , Filipendula vulgaris and Veronica spicata ) in bryophyte and lichen carpets was analysed in a series of greenhouse experiments. The aspects investigated were: the influence of thickness of moss mats, both in dry and moist conditions, the effects of thick Cladonia spp. clumps, and of living vs dead moss shoots and lichen podetia. Overall, Festuca seedlings emerged best whereas the small-seeded species, Arenaria and Veronica , had the lowest emergence. Moisture had a significant effect only on the emergence of Festuca seedlings, which emerged better in the dry treatment than in the moist. A thick moss cover negatively affected seedling emergence of Arenaria and Veronica but did not affect the emergence of Festuca . Filipendula showed lower seedling emergence in both thick and thin moss than on bare soil only in the dry treatment, whereas in the moist treatment emergence did not differ among the three substrates. Arenaria seedlings emerged less in thick and thin moss than on bare soil in the dry treatment, whereas in the moist treatment emergence in the thin moss was not different from bare soil. Thus, in relatively dry environments even a thin moss cover may inhibit rather than facilitate seedling emergence. The lichen clumps inhibited only the emergence of the forbs. Both living moss shoots and lichen podetia inhibited emergence of Veronica seedlings but did not affect Festuca . In contrast, emergence in the presence of dead mosses and lichens did not differ from emergence in their absence for both species. Hence, inhibition of seedling emergence by bryophytes and lichens of at least some vascular plant species may be mediated by some biotic factor. However, the effect of differences in substrate properties on germination cannot be excluded  相似文献   

14.
Mosses are an often‐overlooked component of dryland ecosystems, yet they are common members of biological soil crust communities (biocrusts) and provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and housing of N2 fixing cyanobacteria. Mosses are able to survive long dry periods, respond rapidly to precipitation, and reproduce vegetatively. With these qualities, dryland mosses have the potential to be an excellent dryland restoration material. Unfortunately, dryland mosses are often slow growing in nature, and ex situ cultivation methods are needed to enhance their utility. Our goal was to determine how to rapidly produce, vegetatively, Syntrichia caninervis and S. ruralis, common and abundant moss species in drylands of North America and elsewhere, in a greenhouse. We manipulated the length of hydration on a weekly schedule (5, 4, 3, or 2 days continuous hydration per week), crossed with fertilization (once at the beginning, monthly, biweekly, or not at all). Moss biomass increased sixfold for both species in 4 months, an increase that would require years under dryland field conditions. Both moss species preferred short hydration and monthly fertilizer. Remarkably, we also unintentionally cultured a variety of other important biocrust organisms, including cyanobacteria and lichens. In only 6 months, we produced functionally mature biocrusts, as evidenced by high productivity and ecosystem‐relevant levels of N2 fixation. Our results suggest that biocrust mosses might be the ideal candidate for biocrust cultivation for restoration purposes. With optimization, these methods are the first step in developing a moss‐based biocrust rehabilitation technology.  相似文献   

15.
Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar study conducted at a cool desert site on the Colorado Plateau in SE Utah, USA, where Collema spp. cover dropped in response to elevated temperatures, but did not respond to changes in rainfall. The concentrations of UV-protective pigments in free-living cyanobacteria at the Mojave Desert site were also strongly and positively related to rainfall received between sampling times (R2 values ranged from 0.78 to 0.99). However, pigment levels in the lichenized cyanobacteria showed little correlation with rainfall. Quantum yield in Collema spp. was closely correlated with rainfall. Climate models in this region predict a 3.5–4.0 °C rise in temperature and a 15–20% decline in winter precipitation by 2099. Based on our data, this rise in temperature is unlikely to have a strong effect on the dominant species of the soil crusts. However, the predicted drop in precipitation will likely lead to a decrease in soil lichen and moss cover, and high stress or mortality in soil cyanobacteria as levels of UV-protective pigments decline. In addition, surface-disturbing activities (e.g., recreation, military activities, fire) are rapidly increasing in the Mojave Desert, and these disturbances quickly remove soil lichens and mosses. These stresses combined are likely to lead to shifts in species composition and the local extirpation of some lichen or moss species. As these organisms are critical components of nutrient cycling, soil fertility, and soil stability, such changes are likely to reverberate throughout these ecosystems.  相似文献   

16.
Terrestrial tardigrades are often found in the lichens and mosses growing on trees and rocks. The assertion that tardigrades in these habitats are very patchy in their distribution has rarely been backed by quantitative sampling. This study assesses spatial variability in tardigrade populations inhabiting small patches (0.1 cm2 to over 5 cm2) of moss and lichen on trees and rocks at three sites in the United States of America. Tardigrades were collected from four replicate rocks in the Ouachita Mountains of Arkansas, with 30 lichen patches collected on two adjacent boulders and 20 moss patches on a second pair of boulders. In Fort Myers and in Citrus Springs, Florida, 30 lichen patches per tree were collected from two pairs of trees. The tardigrades in each sample were extracted, mounted, identified, and counted. The variation in tardigrade abundance among lichen or moss patches within rocks or trees was very high; the only consistent pattern was that very small patches usually lacked tardigrades. Tardigrade diversity and abundance also varied greatly within sites when lichens and mosses of the same species from different rocks and trees were compared (in the most extreme case one tree had numerous individuals of two tardigrade species present while the other had almost no tardigrades). The results of this quantitative sampling support the assertion that tardigrades are very patchy in distribution. Given the considerable time investment required for the quantitative processing of tardigrade samples, this high spatial variability in tardigrade diversity and abundance requires that researches testing ecological hypotheses about tardigrade abundance check variability before deciding how many samples to take.  相似文献   

17.
Reintroducing lichens and mosses to areas slated for restoration or rehabilitation may prove integral to project success by filling the biocrust component (niche) of arid ecosystems. In doing so, it is important to select appropriate species and genetic source material. Some bryophyte and lichen species are early pioneers and are potentially well‐suited for restoration projects. Species traits such as high reproductive rates, rapid establishment rates, and large asexual reproductive propagules can be beneficial for restoration. For instance, the large number of spores produced by some mosses are beneficial for reproductive success in arid environments. In addition to identifying the benefit of reproductive strategies, it is important to take habitat needs into consideration; lichen and moss species that are wide‐ranging both geographically and ecologically are recommended over geographically and edaphically restricted species that occur only in specific habitats, such as calcareous soils. Biocrusts used in specific restoration areas should have similar genetic source material (local provenance), and harsh environmental conditions should be ameliorated.  相似文献   

18.
Change in lichen diversity is often used as a bioindicator to estimate effects of atmospheric pollution, but natural variation in lichen cover and species richness can be very high. We examined the top-down effects of spore-consuming ants and the bottom-up effects of nutrient and light availability on lichen diversity associated with the leaf surface of the rain forest understory plant, Piper cenocladum. Plots containing P. cenocladum were randomly assigned to treatments in factorial experiments that included high and low light levels, nutrient enrichment, and presence and absence of the ant mutualist, Pheidole bicornis . At the conclusion of the experiments, plants were harvested and size of leaves, secondary metabolite content (amides), epiphyll cover, and the species richness of the lichens (which comprised 85% of the epiphyll community) were quantified. Epiphyll cover (mosses, liverworts, and lichens) was greater on plants that had ant-mutualists and balanced resources. Lichen species richness was greater for plants with balanced resources, particularly for those with high light availability. Relationships between toxins and lichen cover and richness were weak and unclear. In this system, natural sources of variation were reliable determinants of lichen diversity and both biotic and abiotic influences were important.  相似文献   

19.
《Journal of bryology》2013,35(3):182-189
Abstract

The first bryophyte survey results from Colombian Amazonia are presented. Bryophyte species, differentiated into mosses and liverworts, and further into four life-form classes, were sampled in 0.1-ha plots. These plots were distributed over four landscape units in the middle Caquetá area: floodplains, swamps, terra firme forests and white-sand areas. The total numbers of bryophyte species in the units were 50, 45, 45 and 32, respectively. The plots in floodplains and swamps were richer in moss species than the terra firme and white-sand plots, suggesting that coexistence of many moss species is favoured by high humidity. Moss species with fan life-forms preferred floodplains. On the other hand, liverwort species richness was highest in white-sand plots, which suggests that light incidence controls liverwort species-richness, perhaps more than humidity. All plots from the floodplain of the Caquetá River differed remarkably in species composition (of both mosses and liverworts) from the other landscape units. This may be due to the unique properties of this varzea system where, during yearly flooding events, soil, dead logs and stems are covered with a fresh layer of nutrient-rich fine silt, enhancing the surface for colonization and improving the conditions for productive bryophyte growth compared with elsewhere in the middle Caquetá area.  相似文献   

20.
Amber is renowned for the exceptional preservation state of its inclusions, allowing detailed morphological analysis and providing relevant environmental, palaeoecological, geographical, and geological information. Amber deposits are predominantly known from North America, Europe, and Asia, and are considered to be rare on the continents that formed Gondwana. The recent discovery of fossiliferous amber deposits in Ethiopia, therefore, provides an inimitable opportunity to close gaps in the fossil record of African terrestrial biota and to study organisms which are otherwise rare in the fossil record. Here we show that diverse cryptogams are preserved in highest fidelity in Miocene Ethiopian amber. We describe gametophyte fragments of four liverworts: Thysananthus aethiopicus sp. nov. (Porellales, Lejeuneaceae), Lejeunea abyssinicoides sp. nov. (Porellales, Lejeuneaceae), Frullania shewanensis sp. nov. (Porellales, Frullaniaceae), and Frullania palaeoafricana sp. nov. (Porellales, Frullaniaceae). Furthermore, we describe a pleurocarpous moss of the extant genus Isopterygium (Hypnales, Pylaisiadelphaceae) and a lichen representing the order Lecanorales. These new specimens represent the first amber fossils of liverworts, mosses, and lichens from the African continent and render Ethiopian amber as one of the few worldwide amber deposits preserving bryophytes (mosses and liverworts) or lichens. Fossil species of Thysananthus were recorded in Eocene Baltic and Oligocene Bitterfeld as well as Miocene Dominican and probably also Miocene Mexican ambers. Fossils that can unequivocally be assigned to Lejeunea have only been found in Dominican amber so far. Neotropical ambers contain only one taxon of Frullania to date, while the genus is most diverse in Baltic, Bitterfeld, and Rovno ambers, formed in temperate regions. The new fossils support a tropical to subtropical origin of Ethiopian amber. The new African liverwort fossils are included in an updated list of leafy liverworts described from worldwide Cenozoic ambers to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号