共查询到20条相似文献,搜索用时 0 毫秒
1.
Meijuan Liu Pengwei Wang Xiaomei Sui Fang Ding Li Liu Zengyan Gao Zhaozhong Cheng 《Journal of cellular biochemistry》2020,121(10):4226-4238
Lung adenocarcinoma (LUAD), a general kind of bronchogenic malignancy globally, is depicted as one of the most critical factors affecting human health severely. Featured with loop structure, circular RNA (circRNA) has been described as an essential regulator of multiple human malignancies. Nevertheless, knowledge concerning the regulatory function of circRNA in LUAD progression remains limited. Identified as a novel circRNA, circABCC4 has not been studied in LUAD as yet. This is the first time to probe into the underlying role of circABCC4 in LUAD. In this study, a notably elevated expression of circABCC4 was found in LUAD tissues and cells. Besides, circABCC4 is verified to be characterized with a circular structure in LUAD. Functional assays elucidated that knockdown of circABCC4 significantly impaired LUAD cell proliferation, migration as well as accelerated cell apoptosis. Molecular mechanism experiments later revealed that circABCC4 could bind with miR-3186-3p and miR-3186-3p was a tumor suppressor in LUAD. Moreover, TNRC6B was validated to combine with miR-3186-3p, and its expression was respectively negatively and positively regulated by miR-3186-3p and circABCC4 in LUAD. Final rescue experiments further delineated that TNRC6B upregulation partially restored circABCC4 downregulation-mediated effect on LUAD progression. In sum, circABCC4 regulates LUAD progression via miR-3186-3p/TNRC6B axis. 相似文献
2.
3.
4.
5.
6.
7.
8.
miR‐15b‐5p facilitates the tumorigenicity by targeting RECK and predicts tumour recurrence in prostate cancer 下载免费PDF全文
Ran Chen Lu Sheng Hao‐Jie Zhang Ming Ji Wei‐Qing Qian 《Journal of cellular and molecular medicine》2018,22(3):1855-1863
MicroRNAs (miRNAs) have been reported to participate in many biological behaviours of multiple malignancies. Recent studies have shown that miR‐15b‐5p (miR‐15b) exhibits dual roles by accelerating or blocking tumour progression. However, the molecular mechanisms by which miR‐15b contributes to prostate cancer (PCa) are still elusive. Here, miR‐15b expression was found significantly up‐regulated in PCa in comparison with the normal samples and was positively correlated with age and Gleason score in patients with PCa. Notably, PCa patients with miR‐15b high expression displayed a higher recurrence rate than those with miR‐15b low expression (P = 0.0058). Knockdown of miR‐15b suppressed cell growth and invasiveness in 22RV1 and PC3 cells, while overexpression of miR‐15b reversed these effects. Then, we validated that RECK acted as a direct target of miR‐15b by dual‐luciferase assay and revealed the negative correlation of RECK with miR‐15b expression in PCa tissues. Ectopic expression of RECK reduced cell proliferation and invasive potential and partially abrogated the tumour‐promoting effects caused by miR‐15b overexpression. Additionally, miR‐15b knockdown inhibited tumour growth activity in a mouse PCa xenograft model. Taken together, our findings indicate that miR‐15b promotes the progression of PCa cells by targeting RECK and represents a potential marker for patients with PCa. 相似文献
9.
10.
11.
Zhihua Zeng Wanming Zhou Lingxing Duan Jian Zhang Xiongbing Lu Liang Jin Yi Yu 《Journal of cellular physiology》2019,234(4):3887-3896
Increasing reports indicate that circular RNAs (circRNAs) are very important regulators in human diseases, including cancers. In bladder cancer (BC), several circRNAs have been reported to be involved in tumor progressions, such as circ-ITCH and circTCF25. However, the functions of most circRNAs in BC still remains largely unknown. In this study, we identified a novel circRNA termed as circ-VANGL1 by bioinformatics analysis. We found that circ-VANGL1 was highly expressed in BC tissues compared with adjacent normal tissues. Furthermore, we showed that circ-VANGL1 could serve as a prognostic marker for patients with BC. Through functional experiments, we found that circ-VANGL1 knockdown significantly suppressed BC cell proliferation, cell cycle, migration, and invasion in vitro. Besides, circ-VANGL1 silence inhibited BC cell propagation in vivo. Mechanistically, we identified circ-VANGL1 as a sponge of miR-605-3p which targeted VANGL1 in BC cells. Through repressing miR-605-3p availability, circ-VANGL1 contributes to VANGL1 expression, consequently leading to BC cell proliferation, migration, and invasion. Taken together, our study demonstrated circ-VANGL1/miR-605-3p/VANGL1 as a novel essential signaling pathway involved in BC progression. 相似文献
12.
13.
Peng‐cheng Deng Wei‐bo Chen Hui‐hua Cai Yong An Xin‐quan Wu Xue‐min Chen Dong‐lin Sun Yu Yang Long‐qing Shi Yong Yang 《Journal of cellular and molecular medicine》2019,23(11):7222-7232
This study aimed to determine long non‐coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) expression in pancreatic cancer and to explore the potential molecular actions of SNHG14 in mediating pancreatic cancer progression. Gene expression was detected by quantitative real‐time PCR. Cell proliferation, growth and invasion were detected by respective CCK‐8, colony formation, and transwell invasion assays. Protein levels were measured by Western blotting. Cell apoptosis and caspase‐3 activity were detected by flow cytometry and caspase‐3 activity assay. The link between miR‐613 and its targets was evaluated by luciferase reporter assay. In vivo tumour growth was evaluated using a xenograft model of nude mice. SNHG14 expression was up‐regulated in cancerous tissues from pancreatic cancer patients. High expression of SNHG14 was associated with poor tumour differentiation, advanced TNM stage and nodal metastasis. SNHG14 overexpression enhanced cell proliferative, growth and invasive abilities, and suppressed apoptotic rates and caspase‐3 activity in pancreatic cancer cells, while SNHG14 knockdown exerted opposite effects. Mechanistic studies revealed that miR‐613 was targeted by SNHG14, and Annexin A2 (ANXA2) was targeted and inversely regulated by miR‐613 in pancreatic cancer cells. In vivo studies showed that SNHG14 knockdown attenuated tumour growth. MiR‐613 was down‐regulated and ANXA2 was up‐regulated in the pancreatic cancer tissues, and SNHG14 expression levels were inversely correlated with miR‐613 expression levels and positively correlated with the ANXA2 mRNA expression levels. Collectively, our results suggest that SNHG14 potentiates pancreatic cancer progression through modulation of annexin A2 expression via acting as a competing endogenous RNA for miR‐613. 相似文献
14.
Downregulation of ARID4A and ARID4B promote tumor progression and directly regulated by microRNA‐30d in patient with prostate cancer 下载免费PDF全文
Ying‐Ke Liang Zhao‐Dong Han Jian‐Ming Lu Ze‐Zhen Liu Yang‐Jia Zhuo Xue‐Jin Zhu Jun‐Xu Chen Jian‐Heng Ye Yu‐Xiang Liang Hui‐Chan He Wei‐De Zhong 《Journal of cellular biochemistry》2018,119(9):7245-7255
15.
Zhenming Jiang Yuxi Zhang Xi Chen Pingeng Wu Dong Chen 《Journal of cellular and molecular medicine》2020,24(2):1878-1892
Prostate cancer is one of the major causes of cancer‐related mortality in men across the world. Recently, long non‐coding RNAs (lncRNAs) and Kruppel‐like factor 4 (KLF4) have been reported to participate in the biology of multiple cancers including prostate cancer. Here, this study aimed to explore the possible role of LINC00673 in prostate cancer via KLF4 gene promoter methylation. Microarray‐based gene expression profiling of prostate cancer was employed to identify differentially expressed lncRNAs and genes, after which the expression of LINC00673 and KLF4 in prostate cancer tissues was determined using RT‐qPCR. Next, the relationship between LINC00673 and KLF4 was evaluated using in silico analysis. Further, the effect of LINC00673 and KLF4 on cell proliferation and drug resistance of transfected cells was examined with gain‐ and loss‐of‐function experimentation. It was found that LINC00673 was highly expressed, while KLF4 was poorly expressed in prostate cancer tissues. Additionally, LINC00673 could bind to KLF4 gene promoter region and recruit methyltransferase to the KLF4 gene promoter region. Moreover, LINC00673 silencing was demonstrated to reduce methylation of the KLF4 gene promoter to elevate the expression of KLF4, thus suppressing the proliferation and drug resistance of prostate cancer cells. In summary, LINC00673 silencing could drive demethylation of the KLF4 gene promoter and thus inhibit the proliferation and drug resistance of prostate cancer cells, suggesting that silencing of LINC00673 and elevation of KLF4 could serve as tumour suppressors in prostate cancer. 相似文献
16.
Jianjun Sha Qing Han Chenfei Chi Yinjie Zhu Jiahua Pan Baijun Dong Yiran Huang Weiliang Xia Wei Xue 《Journal of cellular physiology》2020,235(3):2129-2138
Castration-resistant prostate cancer (CRPC) causes most of the deaths in patients with prostate cancer (PCa). The androgen receptor (AR) axis plays an important role in castration resistance. Emerging studies showed that the lysine demethylase KDM4B is a key molecule in AR signaling and turnover, and autophagy plays an important role in CRPC. However, little is known about whether KDM4B promotes CRPC progression by regulating autophagy. Here we used an androgen-independent LNCaP (LNCaP-AI) cell line to assay aberrant KDM4B expression using qPCR and western blot analysis and investigated the function of KDM4B in regulating cell proliferation. We found that KDM4B was markedly increased in LNCaP-AI cells compared with LNCaP cells. KDM4B level was significantly correlated with the Gleason score in PCa tissues. In vitro, KDM4B overexpression in CRPC cells promoted cell proliferation, whereas knockdown of KDM4B significantly inhibited cell proliferation. Upregulated KDM4B contributed to activate Wnt/β-catenin signaling and autophagy. Moreover, KDM4B activated autophagy by regulating the Wnt/β-catenin signaling. Finally, we demonstrated that autophagy inhibition attenuated KDM4B-induced CRPC cell proliferation. Our results provided novel insights into the function of KDM4B-driven CRPC development and indicated that KDM4B may be served as a potential target for CRPC therapy. 相似文献
17.
Ya‐Wen Wang Song Zhao Xun‐Yi Yuan Yao Liu Kai Zhang Jianli Wang Jiang Zhu Rong Ma 《Journal of cellular and molecular medicine》2019,23(4):2549-2557
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13. 相似文献
18.
Meng Wu Yawei Huang Tongchang Chen Weichao Wang Shiguang Yang Zhenfeng Ye Xiaoqing Xi 《Journal of cellular and molecular medicine》2019,23(1):29-38
This study was designed to detecting the influences of lncRNA MEG3 in prostate cancer. Aberrant lncRNAs expression profiles of prostate cancer were screened by microarray analysis. The qRT‐PCR and Western blot were employed to investigating the expression levels of lncRNA MEG3, miR‐9‐5p and QKI‐5. The luciferase reporter assay was utilized to testifying the interactions relationship among these molecules. Applying CCK‐8 assay, wound healing assay, transwell assay and flow cytometry in turn, the cell proliferation, migration and invasion abilities as well as apoptosis were measured respectively. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer tissues and cells and could inhibit the expression of miR‐9‐5p, whereas miR‐9‐5p down‐regulated QKI‐5 expression. Overexpressed MEG3 and QKI‐5 could decrease the abilities of proliferation, migration and invasion in prostate cancer cells effectively and increased the apoptosis rate. On the contrary, miR‐9‐5p mimics presented an opposite tendency in prostate cancer cells. Furthermore, MEG3 inhibited tumour growth and up‐regulated expression of QKI‐5 in vivo. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer and impacted the abilities of cell proliferation, migration and invasion, and cell apoptosis rate, this regulation relied on regulating miR‐9‐5p and its targeting gene QKI‐5. 相似文献
19.
Knockdown of LINC01614 inhibits lung adenocarcinoma cell progression by up‐regulating miR‐217 and down‐regulating FOXP1 下载免费PDF全文
Ai‐Na Liu Hua‐Jun Qu Cai‐Yan Yu Ping Sun 《Journal of cellular and molecular medicine》2018,22(9):4034-4044
We tried to identify the function of LINC01614 in lung adenocarcinoma (LUAD) and reveal its underlying mechanisms. qRT‐PCR was applied to assess the expression of LINC016014 in LUAD tissues, noncancerous tissues and cells. Through colony formation assay, MTT assay and apoptosis analysis, we examined the variation of cell proliferation and apoptosis ability after silencing LINC01614. Moreover, the targeting interactions among LINC01614, miR‐217 and FOXP1 were validated via luciferase reporter assay, and then, we regulated the expression of miR‐217 and FOXP1 to ascertain their importance in cell proliferation and apoptosis. LINC01614 and FOXP1 were found to be up‐regulated in LUAD tumours and cells, whereas miR‐217 was down‐regulated. The experiment showed that target‐specific selectivity exists between LINC01614‐miR‐217 and miR‐217‐FOXP1 3′UTR. Furthermore, we disclosed that inhibition of LINC01614 could activate miR‐217, which subsequently restrained FOXP1. It was proved that LINC01614 promoted FOXP1 by inhibiting miR‐217, which ultimately stimulated the development of LUAD. 相似文献