首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic differences in acute behavioral responses to ethanol contribute to the susceptibility to alcohol use disorder and the reduction of anxiety is a commonly reported motive underlying ethanol consumption among alcoholics. Therefore, we studied the genetic variance in anxiolytic‐like responses to ethanol across the BXD recombinant inbred (RI) mouse panel using the light–dark transition model of anxiety. Strain‐mean genetic mapping and a mixed‐model quantitative trait loci (QTL) analysis replicated several previously published QTL for locomotor activity and identified several novel anxiety‐related loci. Significant loci included a chromosome 11 saline anxiety‐like QTL (Salanq1) and a chromosome 12 locus (Etanq1) influencing the anxiolytic‐like response to ethanol. Etanq1 was successfully validated by studies with BXD advanced intercross strains and fine‐mapped to a region comprising less than 3.5 Mb. Through integration of genome‐wide mRNA expression profiles of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens and ventral midbrain) across the BXD RI panel, we identified high priority candidate genes within Etanq1, the strongest of which was Ninein (Nin), a Gsk3β‐interacting protein that is highly expressed in the brain.  相似文献   

2.
Genetic reference populations, particularly the BXD recombinant inbred (BXD RI) strains derived from C57BL/6J and DBA/2J mice, are a valuable resource for the discovery of the bio‐molecular substrates and genetic drivers responsible for trait variation and covariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict the occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic coregulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium (TMGC) have obtained phenotype data from over 250 measures related to multiple behavioral assays across several batteries: response to, and withdrawal from cocaine, 3,4‐methylenedioxymethamphetamine; “ecstasy” (MDMA), morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity and sleep/wake cycles. All traits have been measured in both sexes in approximately 70 strains of the recently expanded panel of BXD RI strains. Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent (N = 37) BXD RI lines was performed. Primary data are publicly available for heritability, sex difference and genetic analyses using the MouseTrack database, and are also available in GeneNetwork.org for quantitative trait locus (QTL) detection and genetic analysis of gene expression. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.  相似文献   

3.
Ziebarth JD  Cook MN  Wang X  Williams RW  Lu L  Cui Y 《PloS one》2012,7(2):e31805
Genetic control of gene expression and higher-order phenotypes is almost invariably dependent on environment and experimental conditions. We use two families of recombinant inbred strains of mice (LXS and BXD) to study treatment- and genotype-dependent control of hippocampal gene expression and behavioral phenotypes. We analyzed responses to all combinations of two experimental perturbations, ethanol and restraint stress, in both families, allowing for comparisons across 8 combinations of treatment and population. We introduce the concept of QTL activity patterns to characterize how associations between genomic loci and traits vary across treatments. We identified several significant behavioral QTLs and many expression QTLs (eQTLs). The behavioral QTLs are highly dependent on treatment and population. We classified eQTLs into three groups: cis-eQTLs (expression variation that maps to within 5 Mb of the cognate gene), syntenic trans-eQTLs (the gene and the QTL are on the same chromosome but not within 5 Mb), and non-syntenic trans-eQTLs (the gene and the QTL are on different chromosomes). We found that most non-syntenic trans-eQTLs were treatment-specific whereas both classes of syntenic eQTLs were more conserved across treatments. We also found there was a correlation between regions along the genome enriched for eQTLs and SNPs that were conserved across the LXS and BXD families. Genes with eQTLs that co-localized with the behavioral QTLs and displayed similar QTL activity patterns were identified as potential candidate genes associated with the phenotypes, yielding identification of novel genes as well as genes that have been previously associated with responses to ethanol.  相似文献   

4.
Cognitive deficits, such as disrupted learning, are a major symptom of nicotine withdrawal. These deficits are heritable, yet their genetic basis is largely unknown. Our lab has developed a mouse model of nicotine withdrawal deficits in learning, using chronic nicotine exposure via osmotic minipumps and fear conditioning. Here, we utilized the BXD genetic reference panel to identify genetic variants underlying nicotine withdrawal deficits in learning. Male and female mice (n = 6–11 per sex per strain, 31 strains) received either chronic saline or nicotine (6.3 mg/kg per day for 12 days), and were then tested for hippocampus-dependent learning deficits using contextual fear conditioning. Quantitative trait locus (QTL) mapping analyses using GeneNetwork identified a significant QTL on Chromosome 4 (82.13 Mb, LRS = 20.03, p < 0.05). Publicly available hippocampal gene expression data were used to identify eight positional candidates (Snacpc3, Mysm1, Rps6, Plaa, Lurap1l, Slc24a2, Hacd4, Ptprd) that overlapped with our behavioral QTL and correlated with our behavioral data. Overall, this study demonstrates that genetic factors impact cognitive deficits during nicotine withdrawal in the BXD recombinant inbred panel and identifies candidate genes for future research.  相似文献   

5.
6.
Pharmacological and genetic studies have suggested that the metabotropic glutamate receptor 5 (mGluR5) is critically involved in mediating the reinforcing effects of drugs of abuse, but not food. The purpose of this study was to use mGluR5 knockout (KO), heterozygous (Het), and wildtype (WT) mice to determine if mGluR5 modulates operant sensation seeking (OSS), an operant task that uses varied sensory stimuli as a reinforcer. We found that mGluR5 KO mice had significantly reduced OSS responding relative to WT mice, while Het mice displayed a paradoxical increase in OSS responding. Neither KO nor Het mice exhibited altered operant responding for food as a reinforcer. Further, we assessed mGluR5 KO, Het and WT mice across a battery of cocaine locomotor, place preference and anxiety related tests. Although KO mice showed expected differences in some locomotor and anxiety measures, Het mice either exhibited no phenotype or an intermediate one. In total, these data demonstrate a key role for mGluR5 in OSS, indicating an important role for this receptor in reinforcement-based behavior.  相似文献   

7.
The IGF‐1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF‐1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF‐1 levels. Quantitative trait loci (QTL) analysis of IGF‐1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb). Haplotype association mapping of IGF‐1 levels in 28 domesticated inbred strains identified three suggestive loci in females on Chrs 2 (13 Mb), 10 (88 Mb), and 17 (28 Mb) and in four males on Chrs 1 (159 Mb), 3 (52 and 58 Mb), and 16 (74 Mb). Except for the QTL on Chr 9 and 16, all loci co‐localized with IGF‐1 QTL previously identified in other mouse crosses. The most significant locus was the QTL on Chr 10, which contains the Igf1 gene and which had a LOD score of 31.8. Haplotype analysis among 28 domesticated inbred strains revealed a major QTL on Chr 10 overlapping with the QTL identified in the F2 mice. This locus showed three major haplotypes; strains with haplotype 1 had significantly lower plasma IGF‐1 and extended longevity (P < 0.05) than strains with haplotype 2 or 3. Bioinformatic analysis, combined with sequencing and expression studies, showed that Igf1 is the most likely QTL gene, but that other genes may also play a role in this strong QTL.  相似文献   

8.
The open field is a classic test used to assess exploratory behavior, anxiety and locomotor activity in rodents. Here, we mapped quantitative trait loci (QTLs) underlying behaviors displayed in an open field, using a panel of 53 BXD recombinant inbred mouse strains with deep replication (10 per strain and sex). The use of these strains permits the integration and comparison of data obtained in different laboratories, and also offers the possibility to study trait covariance by exploiting powerful bioinformatics tools and resources. We quantified behavioral traits during 20‐min test sessions including (1) percent time spent and distance traveled near the wall (thigmotaxis), (2) leaning against the wall, (3) rearing, (4) jumping, (5) grooming duration, (6) grooming frequency, (7) locomotion and (8) defecation. All traits exhibit moderate heritability making them amenable to genetic analysis. We identified a significant QTL on chromosome M.m. 4 at approximately 104 Mb that modulates grooming duration in both males and females (likelihood ratio statistic values of approximately 18, explaining 25% and 14% of the variance, respectively) and a suggestive QTL modulating locomotion that maps to the same locus. Bioinformatic analysis indicates Disabled 1 (Dab1, a key protein in the reelin signaling pathway) as a particularly strong candidate gene modulating these behaviors. We also found 2 highly suggestive QTLs for a sex by strain interaction for grooming duration on chromosomes 13 and 17. In addition, we identified a pairwise epistatic interaction between loci on chromosomes 12 at 36–37 Mb and 14 at 34–36 Mb that influences rearing frequency in males.  相似文献   

9.
Quantitative trait locus (QTL) mapping efforts in alcohol (ethanol) research are beginning to generate promising data that may ultimately lead to the identification of genes influencing alcohol addiction. Rodents have been extensively utilized to study ethanol's rewarding and aversive effects, and to demonstrate the existence of genetic influences on traits such as free-choice ethanol-consumption, ethanol-conditioned place preference and ethanol-conditioned taste aversion. The purpose of the current investigation was to verify or eliminate from further consideration putative QTLs for free-choice ethanol consumption originally identified in BXD Recombinant Inbred (RI) strains and other informative genetic crosses. B6D2F2 mice were utilized in a verification testing strategy to evaluate the viability of putative ethanol consumption QTLs. When data were combined from BXD RI, B6D2F2 and short-term selected line (STSL) mapping studies, verification was obtained for two QTLs, one on Chromosome (Chr) 9 (proximal-mid) and another on Chr 2 (distal), and suggestive verification was obtained for QTLs on Chrs 2 (proximal), 3, 4, 7, and 15. In addition, the possible genetic association of ethanol consumption with conditioned place preference was evaluated. Genetic correlations were estimated from BXD RI strain means, and QTL maps for these traits were compared to evaluate the possibility of a genetic association. The correlational analysis yielded a trend (r = 0.34, p = 0.09), but no statistically significant results. However, comparisons of QTL mapping results between phenotypes suggested some possible genetic overlap for these traits, both putative measures of ethanol reward. These data suggest that the determinants of these two measures are genetically diverse, but may share some common genetic elements. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

10.
A growth‐related QTL on chicken chromosome 1 has previously been shown to influence domestication behaviour in chickens. In this study, we used Red Junglefowl (RJF) and White Leghorn (WL) as well as the intercross between them to investigate whether stress affects the way birds allocate their time between familiar and unfamiliar conspecifics in a social preference test (‘social support seeking’), and how this is related to genotype at specific loci within the growth QTL. Red Junglefowl males spent more time with unfamiliar chickens before the stressful event compared to the other birds, whereas all birds except WL males tended to spend less time with unfamiliar ones after stress. A significant QTL locus was found to influence both social preference under undisturbed circumstances and social support seeking. The WL allele at this QTL was associated not only with a preference for unfamiliar individuals but also with a shift towards familiar ones in response to stress (social support seeking). A second, suggestive QTL also affected social support seeking, but in the opposite direction; the WL allele was associated with increased time spent with unfamiliar individuals. The region contains several possible candidate genes, and gene expression analysis of a number of them showed differential expression between RJF and WL of AVPR2 (receptor for vasotocin), and possibly AVPR1a (another vasotocin receptor) and NRCAM (involved in neural development) in the lower frontal lobes of the brains of RJF and WL animals. These three genes continue to be interesting candidates for the observed behavioural effects .  相似文献   

11.
Organisms use various strategies to cope with fluctuating environmental conditions. In diversified bet‐hedging, a single genotype exhibits phenotypic heterogeneity with the expectation that some individuals will survive transient selective pressures. To date, empirical evidence for bet‐hedging is scarce. Here, we observe that individual Drosophila melanogaster flies exhibit striking variation in light‐ and temperature‐preference behaviors. With a modeling approach that combines real world weather and climate data to simulate temperature preference‐dependent survival and reproduction, we find that a bet‐hedging strategy may underlie the observed interindividual behavioral diversity. Specifically, bet‐hedging outcompetes strategies in which individual thermal preferences are heritable. Animals employing bet‐hedging refrain from adapting to the coolness of spring with increased warm‐seeking that inevitably becomes counterproductive in the hot summer. This strategy is particularly valuable when mean seasonal temperatures are typical, or when there is considerable fluctuation in temperature within the season. The model predicts, and we experimentally verify, that the behaviors of individual flies are not heritable. Finally, we model the effects of historical weather data, climate change, and geographic seasonal variation on the optimal strategies underlying behavioral variation between individuals, characterizing the regimes in which bet‐hedging is advantageous.  相似文献   

12.
The biogenic amine serotonin (5‐HT, 5‐hydroxytryptamine) exerts powerful, modulatory control over multiple physiological functions in the brain and periphery, ranging from mood and appetite to vasoconstriction and gastrointestinal motility. In order to gain insight into shared and distinct molecular and phenotypic networks linked to variations in 5‐HT homeostasis, we capitalized on the stable genetic variation present in recombinant inbred mouse strains. This family of strains, all derived from crosses between C57BL/6J and DBA/2J (BXD) parents, represents a unique, community resource with approximately 40 years of assembled phenotype data that can be exploited to explore and test causal relationships in silico. We determined levels of 5‐HT and 5‐hydroxyindoleacetic acid from whole blood, midbrain and thalamus/hypothalamus (diencephalon) of 38 BXD lines and both sexes. All 5‐HT measures proved highly heritable in each region, although both gender and region significantly impacted between‐strain correlations. Our studies identified both expected and novel biochemical, anatomical and behavioral phenotypes linked to 5‐HT traits, as well as distinct quantitative trait loci. Analyses of these loci nominate a group of genes likely to contribute to gender‐ and region‐specific capacities for 5‐HT signaling. Analysis of midbrain mRNA variations across strains revealed overlapping gene expression networks linked to 5‐HT synthesis and metabolism. Altogether, our studies provide a rich profile of genomic, molecular and phenotypic networks that can be queried for novel relationships contributing risk for disorders linked to perturbed 5‐HT signaling .  相似文献   

13.
Iron imbalances in the brain, including excess accumulation and deficiency, are associated with neurological disease and dysfunction; yet, their origins are poorly understood. Using systems genetics analysis, we have learned that large individual differences exist in brain iron concentrations, even in the absence of neurological disease. Much of the individual differences can be tied to the genetic makeup of the individual. This genetic-based differential regulation can be modeled in genetic reference populations of rodents. The work in our laboratory centers on iron regulation in the brain and our animal model consists of 25 BXD/Ty recombinant inbred mouse strains. By studying naturally occurring variation in iron phenotypes, such as tissue iron concentration, we can tie that variability to one or more genes by way of quantitative trait loci (QTL) analysis. Moreover, we can conduct genetic correlation analyses between our phenotypes and others previously measured in the BXD/Ty strains. We have observed several suggestive QTL related to ventral midbrain iron content, including one on chromosome 17 that contains btbd9, a gene that in humans has been associated with restless legs syndrome and serum ferritin. We have also observed gene expression correlations with ventral midbrain iron, including btbd9 expression and dopamine receptor expression. In addition, we have observed significant correlations between ventral midbrain iron content and dopamine-related phenotypes. The following is a discussion of iron regulation in the brain and the contributions a systems genetics approach can make toward understanding the genetic underpinnings and relation to neurological disease.  相似文献   

14.
By use of newly developed subcongenic strains of mice from a parental B6.129-Il10−/− knockout/congenic strain, we have narrowed the critical region for a new behavioral QTL, called Emo4, for open-field activity to a segment of Chromosome 1 between Erbb4 (68.4Mb) and B3gnt7 (86.2 Mb). We have also uncovered an additional QTL governing repetitive beam breaks in the open field. This QTL, called Reb1, maps to the interval between Asb1 (91.4 Mb) and NM_172851 (100.0 Mb) and is one of the first QTLs mapped for this type of behavior. Genome-wide microarray expression analyses were then undertaken to help to identify candidate genes that may be the cause of these genetic differences in open-field performance. In this effort, we analyzed global gene expression differences in the amygdalae by use of Affymetrix GeneChips between B6, B6.129-Il10−/−, and B6.129R4. Several probe sets representing target Chr 1 genes were found that showed significantly differential expression in the subcongenic and congenic strains. Several candidate genes have been identified. One of these regions coincides with an homologous region in humans that has been associated with autism, a disease whose symptoms include repetitive actions. This study illustrates that the use of congenic strains combined with global gene expression analyses can produce a list of viable candidates. It further shows that caution should be observed when analyzing the effects of knockout/congenic strains because many of the gene expression differences in these comparisons could not be attributable to the ablated Il10 gene but rather to passenger gene effects.  相似文献   

15.
Mortality from tobacco smoking remains the leading cause of preventable death in the world, yet current cessation therapies are only modestly successful, suggesting new molecular targets are needed. Genetic analysis of gene expression and behavior identified Chrna7 as potentially modulating nicotine place conditioning in the BXD panel of inbred mice. We used gene targeting and pharmacological tools to confirm the role of Chrna7 in nicotine conditioned place preference (CPP). To identify molecular events downstream of Chrna7 that may modulate nicotine preference, we performed microarray analysis of α7 knock‐out (KO) and wild‐type (WT) nucleus accumbens (NAc) tissue, followed by confirmation with quantitative polymerase chain reaction (PCR) and immunoblotting. In the BXD panel, we found a putative cis expression quantitative trait loci (eQTL) for Chrna7 in NAc that correlated inversely to nicotine CPP. We observed that gain‐of‐function α7 mice did not display nicotine preference at any dose tested, whereas conversely, α7 KO mice demonstrated nicotine place preference at a dose below that routinely required to produce preference. In B6 mice, the α7 nicotinic acetylcholine receptor (nAChR)‐selective agonist, PHA‐543613, dose‐dependently blocked nicotine CPP, which was restored using the α7 nAChR‐selective antagonist, methyllycaconitine citrate (MLA). Our genomic studies implicated a messenger RNA (mRNA) co‐expression network regulated by Chrna7 in NAc. Mice lacking Chrna7 demonstrate increased insulin signaling in the NAc, which may modulate nicotine place preference. Our studies provide novel targets for future work on development of more effective therapeutic approaches to counteract the rewarding properties of nicotine for smoking cessation .  相似文献   

16.
Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (−1106T/C, −906T/C, −809G/A, −291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.  相似文献   

17.
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS‐10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS‐10 and B6. We then produced congenic strains to fine‐map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121–129.068 Mb; build 37) appeared to account for all the difference between CSS‐10 and B6. The smaller congenic strain (Line 2: 127.277–129.068 Mb) was intermediate between CSS‐10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis‐eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two‐stage approaches that seek to use coarse mapping to identify large regions followed by fine‐mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine‐mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine‐mapping QTLs .  相似文献   

18.
Presynaptic serotonin (5‐hydroxytryptamine, 5‐HT) transporters (SERT) regulate 5‐HT signaling via antidepressant‐sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive‐compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region‐ and gender‐specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin‐15 gene (Pcdh15), overlapped with a QTL for midbrain 5‐HT levels. Pcdh15 was also the only QTL‐associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5‐HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5‐HT neurons. To test this hypothesis, we assessed SERT protein and 5‐HT traits in the Pcdh15 functional null line (Pcdh15av‐3J), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness .  相似文献   

19.
20.
Female mate choice is fundamental to sexual selection, and determining molecular underpinnings of female preference variation is important for understanding mating character evolution. Previously it was shown that whole‐brain expression of a synaptic plasticity marker, neuroserpin, positively correlates with mating bias in the female choice poeciliid, Xiphophorus nigrensis, when exposed to conspecific courting males, whereas this relationship is reversed in Gambusia affinis, a mate coercive poeciliid with no courting males. Here we explore whether species‐level differences in female behavioral and brain molecular responses represent ‘canalized’ or ‘plastic’ traits. We expose female G. affinis to conspecific males and females, as well as coercive and courting male Poecilia latipinna, for preference assays followed by whole‐brain gene expression analyses of neuroserpin, egr‐1 and early B. We find positive correlations between gene expression and female preference strength during exposure to courting heterospecific males, but a reversed pattern following exposure to coercive heterospecific males. This suggests that the neuromolecular processes associated with female preference behavior are plastic and responsive to different male phenotypes (courting or coercive) rather than a canalized response linked to mating system. Further, we propose that female behavioral plasticity may involve learning because female association patterns shifted with experience. Compared to younger females, we found larger, more experienced females spend less time near coercive males but associate more with males in the presence of courters. We thus suggest a conserved learning‐based neuromolecular process underlying the diversity of female mate preference across the mate choice and coercion‐driven mating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号