共查询到20条相似文献,搜索用时 15 毫秒
1.
Hugh A. L. Henry Nona R. Chiariello Peter M. Vitousek Harold A. Mooney Christopher B. Field 《Ecosystems》2006,9(7):1066-1075
Although it is widely accepted that elevated atmospheric carbon dioxide (CO2), nitrogen (N) deposition, and climate change will alter ecosystem productivity and function in the coming decades, the combined
effects of these environmental changes may be nonadditive, and their interactions may be altered by disturbances, such as
fire. We examined the influence of a summer wildfire on the interactive effects of elevated CO2, N deposition, and increased precipitation in a full-factorial experiment conducted in a California annual grassland. In
unburned plots, primary production was suppressed under elevated CO2. Burning alone did not significantly affect production, but it increased total production in combination with nitrate additions
and removed the suppressive effect of elevated CO2. Increased production in response to nitrate in burned plots occurred as a result of the enhanced aboveground production
of annual grasses and forbs, whereas the removal of the suppressive effect of elevated CO2 occurred as a result of increased aboveground forb production in burned, CO2-treated plots and decreased root production in burned plots under ambient CO2.The tissue nitrogen–phosphorus ratio, which was assessed for annual grass shoots, decreased with burning and increased with
nitrate addition. Burning removed surface litter from plots, resulting in an increase in maximum daily soil temperatures and
a decrease in soil moisture both early and late in the growing season. Measures of vegetation greenness, based on canopy spectral
reflectance, showed that plants in burned plots grew rapidly early in the season but senesced early. Overall, these results
indicate that fire can alter the effects of elevated CO2 and N addition on productivity in the short term, possibly by promoting increased phosphorus availability. 相似文献
2.
Brett A. Bryan Neville D. Crossman Martin Nolan Jing Li Javier Navarro Jeffery D. Connor 《Global Change Biology》2015,21(11):4098-4114
Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade‐offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services. 相似文献
3.
Leanne N. Phelps Manuel Chevalier Timothy M. Shanahan Julie C. Aleman Colin Courtney-Mustaphi Christopher Albert Kiahtipes Oliver Broennimann Rob Marchant John Shekeine Lynne J. Quick Basil A. S. Davis Antoine Guisan Katie Manning 《Ecography》2020,43(8):1118-1142
A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental-scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE-21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental-scale vegetation change. 相似文献
4.
Melissa Chapman Wayne S. Walker Susan C. Cook‐Patton Peter W. Ellis Mary Farina Bronson W. Griscom Alessandro Baccini 《Global Change Biology》2020,26(8):4357-4365
While improved management of agricultural landscapes is promoted as a promising natural climate solution, available estimates of the mitigation potential are based on coarse assessments of both agricultural extent and aboveground carbon density. Here we combine 30 meter resolution global maps of aboveground woody carbon, tree cover, and cropland extent, as well as a 1 km resolution map of global pasture land, to estimate the current and potential carbon storage of trees in nonforested portions of agricultural lands. We find that global croplands currently store 3.07 Pg of carbon (C) in aboveground woody biomass (i.e., trees) and pasture lands account for an additional 3.86 Pg C across a combined 3.76 billion ha. We then estimate the climate mitigation potential of multiple scenarios of integration and avoided loss of trees in crop and pasture lands based on region‐specific biomass distributions. We evaluate our findings in the context of nationally determined contributions and find that the majority of potential carbon storage from integration and avoided loss of trees in crop and pasture lands is in countries that do not identify agroforestry as a climate mitigation technique. 相似文献
5.
土壤有机碳是陆地碳库的重要组成部分,也是当前全球碳循环和全球变化研究的热点。土地利用/覆被变化及土地管理变化通过影响土壤有机碳的储量和分布,进而影响温室气体排放和陆地生态系统的碳通量。研究土地利用变化影响下的土壤有机碳储量及其动态变化规律,有助于加深理解全球气候变化与土地利用变化之间的关系。在阅读国内外有关文献的基础上,分别从土地利用及其管理方式变化的角度,概括了土地利用变化对土壤有机碳的影响过程与机理;针对当前研究的两大类方法,即实验方法和模型方法,分类详细介绍了它们各自的特点以及存在的一些问题。在此基础上,提出今后土地利用变化对土壤有机碳影响研究的发展趋势。 相似文献
6.
Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non‐PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large‐scale disturbances that would release large amounts of carbon in PAs. 相似文献
7.
植被碳水利用效率是表征生态系统碳水循环的重要指标。采用MODIS数据,利用Google Earth Engine平台计算植被碳利用效率(Carbon Use Efficiency, CUE)与水利用效率(Water Use Efficiency, WUE)。采用趋势分析、变异系数、R/S分析及偏相关分析等方法,对2000—2020年黄河流域植被CUE与WUE的时空动态进行分析,并探究水热条件对碳水利用效率的影响。结果表明:(1)2000—2020年黄河流域植被碳水利用效率年均值分别为0.61和0.68 gC m-2 mm-1;研究时限内,植被CUE呈波动下降趋势,而WUE呈波动上升趋势。(2)空间上,植被CUE呈西高东低分布,WUE相反。不同土地覆被类型的CUE表现为草地>农田>灌丛>森林;WUE表现为:农田>森林>草地>灌丛。(3)总体上,黄河流域植被CUE与温度呈负相关,与降水呈正相关;黄河流域北部植被WUE与温度和降水均呈正相关关系,黄河流域西南部植被WUE与降水负相关;(4)不同土地利用类型中,草地... 相似文献
8.
气候变化影响全球食物、水、能源生产和消费,并直接威胁国家和区域粮食安全和社会稳定,相关研究关系到国计民生与全球可持续发展。土地退化是近年来国际研究热点,IPCC、IPBES、UNCCD等都开展了土地退化的专题评估,高度关注土地退化的动态、趋势、影响及响应。尽管气候变化与土地退化具有密切关联,但对其复杂关联机制及解决途径缺乏系统的研究。IPCC于2017-2019年开展了第一次气候变化和土地退化评估,并于2019年8月发布了《气候变化与土地》特别报告(SRCCL)。基于此评估报告,对其中气候变化、土地退化与粮食安全之间的关联机制、未来的变化趋势、可能的影响及对策等进行了系统的论述。特别报告的重要贡献在于其厘清了气候变化与土地退化之间的复杂关联与反馈机制,进一步证实土地利用是导致气候变化的主要因素,指出日益增加的人口压力和粮食消费加剧了土地的退化和气候变化。尽管如此,特别报告也强调土地可为当前全球变暖、生物多样性减少等诸多环境问题提供解决方案,并重点指出改变人类饮食结构和消费习惯具有能够同时应对气候变化和土地退化的双赢效果。将全球升温幅度限制在1.5℃以内的窗口期正在迅速缩短,要解决当前日益凸显的气候变化和土地退化问题,需要推动食物消费的转型、降低碳排放、实施可持续土地管理,促进可同时减缓气候变化和土地退化的协同行动,科学合理的应用负排放和碳储存技术。 相似文献
9.
Daniele De Rosa;Cristiano Ballabio;Emanuele Lugato;Matteo Fasiolo;Arwyn Jones;Panos Panagos; 《Global Change Biology》2024,30(1):e16992
The EU Soil Strategy 2030 aims to increase soil organic carbon (SOC) in agricultural land to enhance soil health and support biodiversity as well as to offset greenhouse gas emissions through soil carbon sequestration. Therefore, the quantification of current SOC stocks and the spatial identification of the main drivers of SOC changes is paramount in the preparation of agricultural policies aimed at enhancing the resilience of agricultural systems in the EU. In this context, changes of SOC stocks (Δ SOCs) for the EU + UK between 2009 and 2018 were estimated by fitting a quantile generalized additive model (qGAM) on data obtained from the revisited points of the Land Use/Land Cover Area Frame Survey (LUCAS) performed in 2009, 2015 and 2018. The analysis of the partial effects derived from the fitted qGAM model shows that land use and land use change observed in the 2009, 2015 and 2018 LUCAS campaigns (i.e. continuous grassland [GGG] or cropland [CCC], conversion grassland to cropland (GGC or GCC) and vice versa [CGG or CCG]) was one of the main drivers of SOC changes. The CCC was the factor that contributed to the lowest negative change on Δ SOC with an estimated partial effect of −0.04 ± 0.01 g C kg−1 year−1, while the GGG the highest positive change with an estimated partial effect of 0.49 ± 0.02 g C kg−1 year−1. This confirms the C sequestration potential of converting cropland to grassland. However, it is important to consider that local soil and environmental conditions may either diminish or enhance the grassland's positive effect on soil C storage. In the EU + UK, the estimated current (2018) topsoil (0–20 cm) SOC stock in agricultural land below 1000 m a.s.l was 9.3 Gt, with a Δ SOC of −0.75% in the period 2009–2018. The highest estimated SOC losses were concentrated in central-northern countries, while marginal losses were observed in the southeast. 相似文献
10.
Torbern Tagesson;Julia Kelly;Guy Schurgers;Feng Tian;Jonas Ardö;Stephanie Horion;Anders Ahlström;Stefan Olin;Rasmus Fensholt; 《Global Ecology and Biogeography》2024,33(1):116-130
Earth observation-based estimates of land–atmosphere exchange of carbon are essential for understanding the response of the terrestrial biosphere to climatic change and other anthropogenic forcing. Temperature, soil water content and gross primary production are the main drivers of ecosystem respiration (Reco), and the main aims of this study are to develop an Reco model driven by long-term global-scale Earth observations and to study Reco spatiotemporal dynamics 1982–2015. 相似文献
11.
鄱阳湖流域作为较突出的碳汇功能区,深入掌握不同土地覆被碳素利用率(CUE)和水分利用效率(WUE)的时空分异规律及其对气候因子的响应,对明确气候变化背景下该流域生态功能和碳水循环有重要意义。利用MODIS数据产品,结合流域土地利用和气象监测数据,辅以趋势分析和相关分析等方法研究了2000-2014年鄱阳湖流域不同土地利用类型CUE和WUE的时空变化特征,并探讨了其与降水、气温和日照时数的相关性。结果表明:1)鄱阳湖流域CUE和WUE多年平均值分别为0.458和0.682 gC/kgH2O,不同土地利用类型的CUE大小依次为草地 > 水田 > 其他林地 > 旱地 > 疏林地 > 灌木林 > 有林地,WUE大小依次为有林地 > 灌木林 > 旱地 > 疏林地 > 水田 > 其他林地 > 草地;2)鄱阳湖流域CUE、WUE在研究时段内均呈微弱下降趋势,各土地利用类型CUE和WUE则表现出较大的年际波动,且年际变化趋势率具有高度的相似性,其中林地各类型下降趋势最大,其次是旱地和水田,草地最小;3)降水是影响鄱阳湖流域土地覆被碳水利用效率变化的关键因素,其他因子与CUE和WUE的相关性均不显著,不同覆被CUE和WUE对气温、降水和日照时数的响应程度存在较大差异。 相似文献
12.
Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice? 总被引:1,自引:0,他引:1
Gerald Kalt Andreas Mayer Michaela C. Theurl Christian Lauk Karl‐Heinz Erb Helmut Haberl 《Global Change Biology Bioenergy》2019,11(11):1283-1297
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time. 相似文献
13.
Jinfeng Chang Philippe Ciais Nicolas Viovy Nicolas Vuichard Mario Herrero Petr Havlík Xuhui Wang Benjamin Sultan Jean‐François Soussana 《Global Change Biology》2016,22(1):338-350
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers. 相似文献
14.
Subsoils contain large amounts of organic carbon which is generally believed to be highly stable when compared with surface soils. We investigated subsurface organic carbon storage and dynamics by analysing organic carbon concentrations, fractions and isotopic values in 78 samples from 12 sites under different land‐uses and climates in eastern Australia. Despite radiocarbon ages of several millennia in subsoils, contrasting native systems with agriculturally managed systems revealed that subsurface organic carbon is reactive on decadal timeframes to land‐use change, which leads to large losses of young carbon down the entire soil profile. Our results indicate that organic carbon storage in soils is input driven down the whole profile, challenging the concept of subsoils as a repository of stable organic carbon. 相似文献
15.
Pete Smith Christian A. Davies Stephen Ogle Giuliana Zanchi Jessica Bellarby Neil Bird Robert M. Boddey Niall P. McNamara David Powlson Annette Cowie Meine van Noordwijk Sarah C. Davis Daniel DE B. Richter Len Kryzanowski Mark T. van Wijk Judith Stuart Akira Kirton Duncan Eggar Geraldine Newton‐Cross Tapan K. Adhya Ademola K. Braimoh 《Global Change Biology》2012,18(7):2089-2101
Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodologies commonly underpin project‐scale carbon accounting for changes in land use and management and are used in frameworks for Life Cycle Assessment and carbon footprinting of food and energy crops. These methodologies were intended for use at large spatial scales. This can introduce error in predictions at finer spatial scales. There is an urgent need for development and implementation of higher tier methodologies that can be applied at fine spatial scales (e.g. farm/project/plantation) for food and bioenergy crop greenhouse gas (GHG) accounting to facilitate decision making in the land‐based sectors. Higher tier methods have been defined by IPCC and must be well evaluated and operate across a range of domains (e.g. climate region, soil type, crop type, topography), and must account for land use transitions and management changes being implemented. Furthermore, the data required to calibrate and drive the models used at higher tiers need to be available and applicable at fine spatial resolution, covering the meteorological, soil, cropping system and management domains, with quantified uncertainties. Testing the reliability of the models will require data either from sites with repeated measurements or from chronosequences. We review current global capability for estimating changes in soil carbon at fine spatial scales and present a vision for a framework capable of quantifying land use change and management impacts on soil carbon, which could be used for addressing issues such as bioenergy and biofuel sustainability, food security, forest protection, and direct/indirect impacts of land use change. The aim of this framework is to provide a globally accepted standard of carbon measurement and modelling appropriate for GHG accounting that could be applied at project to national scales (allowing outputs to be scaled up to a country level), to address the impacts of land use and land management change on soil carbon. 相似文献
16.
生态资产与人类福祉密切相关,开展生态资产评估并定量区分气候和人类活动对生态资产变化的相对贡献,对于评估区域生态文明建设成效、生态补偿、干部离任的自然资产审计等均具有重要意义。在单位面积价值当量因子方法的基础上,重新定义了标准生态服务价值当量因子,并构建了一个能够定量区分气候变化和土地利用变化对生态资产变化相对贡献的方法,以北京市房山区为例,分析了2000年至2019年房山区生态资产的变化,以及气候变化和土地利用变化对生态资产变化的相对贡献,结果表明:(1)房山区2019年生态资产总价值177.14亿元。森林、草地、农田和湿地的生态资产分别占生态资产总价值的82.33%、11.76%、5.25%和0.095%。(2)房山在2000—2019年期间,生态资产总价值增加了2.275亿元,气候变化使得房山区的生态资产总价值增加了2.689亿元,而土地利用变化使得生态资产总价值减少了0.414亿元。(3)房山区生态资产西高东低,其中霞云岭乡生态资产总价值最高;琉璃河镇的生态资产增加最多,而拱辰街道下降最显著。过去20年是房山区社会经济快速发展的时期,由于气候变化和生态保护与修复使得生态资产增加,抵消了由于建设用地扩张所带来的生态资产损失。 相似文献
17.
Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark–recapture study involving 830 N. apoda individuals during a one‐in‐seventy‐year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long‐held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change. 相似文献
18.
Heather L. Hulton VanTassel Michael D. Bell John Rotenberry Robert Johnson Michael F. Allen 《Ecology and evolution》2017,7(23):10326-10338
Many species have already experienced distributional shifts due to changing environmental conditions, and analyzing past shifts can help us to understand the influence of environmental stressors on a species as well as to analyze the effectiveness of conservation strategies. We aimed to (1) quantify regional habitat associations of the California gnatcatcher (Polioptila californica ); (2) describe changes in environmental variables and gnatcatcher distributions through time; (3) identify environmental drivers associated with habitat suitability changes; and (4) relate habitat suitability changes through time to habitat conservation plans. Southern California's Western Riverside County (WRC ), an approximately 4,675 km2 conservation planning area. We assessed environmental correlates of distributional shifts of the federally threatened California gnatcatcher (hereafter, gnatcatcher) using partitioned Mahalanobis D 2 niche modeling for three time periods: 1980–1997, 1998–2003, and 2004–2012, corresponding to distinct periods in habitat conservation planning. Highly suitable gnatcatcher habitat was consistently warmer and drier and occurred at a lower elevation than less suitable habitat and consistently had more CSS , less agriculture, and less chaparral. However, its relationship to development changed among periods, mainly due to the rapid change in this variable. Likewise, other aspects of highly suitable habitat changed among time periods, which became cooler and higher in elevation. The gnatcatcher lost 11.7% and 40.6% of highly suitable habitat within WRC between 1980–1997 to 1998–2003, and 1998–2003 to 2004–2012, respectively. Unprotected landscapes lost relatively more suitable habitat (?64.3%) than protected landscapes (30.5%). Over the past four decades, suitable habitat loss within WRC , especially between the second and third time periods, was associated with temperature‐related factors coupled with landscape development across coastal sage scrub habitat; however, development appears to be driving change more rapidly than climate change. Our study demonstrates the importance of providing protected lands for potential suitable habitat in future scenarios. 相似文献
19.
Tim‐Martin Wertebach Norbert Hölzel Immo Kämpf Andrey Yurtaev Sergey Tupitsin Kathrin Kiehl Johannes Kamp Till Kleinebecker 《Global Change Biology》2017,23(9):3729-3741
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction. 相似文献
20.
Dorothea Frank Markus Reichstein Michael Bahn Kirsten Thonicke David Frank Miguel D. Mahecha Pete Smith Marijn van der Velde Sara Vicca Flurin Babst Christian Beer Nina Buchmann Josep G. Canadell Philippe Ciais Wolfgang Cramer Andreas Ibrom Franco Miglietta Ben Poulter Anja Rammig Sonia I. Seneviratne Ariane Walz Martin Wattenbach Miguel A. Zavala Jakob Zscheischler 《Global Change Biology》2015,21(8):2861-2880
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance‐induced mechanisms and processes to also operate in an extreme context. The paucity of well‐defined studies currently renders a quantitative meta‐analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land‐cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground‐based observational case studies reveals that many regions in the (sub‐)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks. 相似文献