首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Endosperm of the nuclear type initially develops into a large multinucleate syncytium that lines the central cell. This seemingly simple wall-less cytoplasm can, however, be highly differentiated. In developing seeds of members of the family Brassicaceae the curved postfertilization embryo sac comprises three chambers or developmental domains. The syncytium fills the micropylar chamber around the embryo, spreads as a thin peripheral layer surrounding a large central vacuole in the central chamber, and is organized into individual nodules and a large multinucleate cyst in the chalazal tip. Later in development, after the endosperm has cellularized in the micropylar and central chambers, the chalazal endosperm cyst remains syncytial and shows considerable internal differentiation. The chalazal endosperm cyst consists of a domelike apical region that is separated from the cellularized endosperm by a remnant of the central vacuole and a basal haustorial portion which penetrates the chalazal proliferative tissue atop the vascular supply. In the shallow chalazal depression ofArabidopsis thaliana, the cyst is mushroom-shaped with short tentacle-like processes penetrating the maternal tissues. The long narrow chalazal channel ofLepidium irginicum is filled by an elongate stalklike portion of the cyst. In both, the dome contains a labyrinth of endoplasmic reticulum, dictyosomes with associated vesicles, nuclei, and plastids. The basal portions, which lack the larger organelles, exhibit extensive wall ingrowths and contain parallel arrays of microtubules. The highly specialized ultrastructure of the chalazal endosperm cyst and its intimate association with degrading chalazal proliferative cells suggest an important role in loading of maternal resources into the developing seed.  相似文献   

2.
In most flowering plants, many embryos are aborted early intheir development due to limited maternal resources. The kin-conflictinterpretation of plant embryology predicts these abortionsshould be under maternal control. In a study of the abortionprocess in Pisum sativum, we found the first visible indicationof abortion was formation of a weak hypostase. Callose was locallydeposited around the chalazal endosperm haustorium, and ligninalong the outer cell walls of the remnant nucellar tissue. Thenucellus was compressed by proliferating adjacent inner integumentalcells. The endosperm haustorium's cytoplasm was forced backinto the embryo sac cavity. With suppression of haustorial activitythe endosperm nuclei gradually enlarged followed by enlargementof the embryo and suspensor nuclei. Finally, nuclei and cytoplasm throughout the endosperm and embryolost stainability and broke down. Four successive stages wererecognized in seed abortion. In seeds developing to maturity,no hypostase was developed and the haustorium continued to digestboth the remnant nucellus and the proliferated inner integumentalcells. These observations are consistent with the kin-conflicthypothesis. Pisum sativum, garden pea, ovule abortion, histology, hypostase, kin-conflict hypothesis  相似文献   

3.
The architecture of the seed is shaped by the processes of tissue partitioning, which determines the volume ratio of maternal and zygotic tissues, and nutrient partitioning, which regulates nutrient distribution among tissues. In angiosperms, early seed development is characterized by antagonistic development of the nucellus maternal tissue and the endosperm fertilization product to become the main sugar sink. This process marked the evolution of angiosperms and outlines the most ancient seed architectures. In Arabidopsis, the endosperm partially eliminates the nucellus and imports sugars from the seed coat. Here, we show that the nucellus is symplasmically connected to the chalaza, the seed nutrient unloading zone, and works as both a sugar sink and source alongside the seed coat. After fertilization, the transient nucellus accumulates starch early on and releases it in the apoplasmic space during its elimination. By contrast, the persistent nucellus exports sugars toward the endosperm through the SWEET4 hexose facilitator. Finally, we analyzed sugar metabolism and transport in the transparent testa 16 mutant, which fails to undergo nucellus cell elimination, which shed light on the coordination between tissue and nutrient partitioning. Overall, this study identifies a path of sugar transport in the Arabidopsis seed and describes a link between sugar redistribution and the nucellus cell-elimination program.

A path of sugar transport through the nucellus maternal tissue of the Arabidopsis seed is coordinated with the process of nucellus cell elimination.  相似文献   

4.
5.
Cotton is the most important textile crop as a result of its long cellulose-enriched mature fibers. These single-celled hairs initiate at anthesis from the ovule epidermis. To date, genes proven to be critical for fiber development have not been identified. Here, we examined the role of the sucrose synthase gene (Sus) in cotton fiber and seed by transforming cotton with Sus suppression constructs. We focused our analysis on 0 to 3 days after anthesis (DAA) for early fiber development and 25 DAA, when the fiber and seed are maximal in size. Suppression of Sus activity by 70% or more in the ovule epidermis led to a fiberless phenotype. The fiber initials in those ovules were fewer and shrunken or collapsed. The level of Sus suppression correlated strongly with the degree of inhibition of fiber initiation and elongation, probably as a result of the reduction of hexoses. By 25 DAA, a portion of the seeds in the fruit showed Sus suppression only in the seed coat fibers and transfer cells but not in the endosperm and embryo. These transgenic seeds were identical to wild-type seeds except for much reduced fiber growth. However, the remaining seeds in the fruit showed Sus suppression both in the seed coat and in the endosperm and embryo. These seeds were shrunken with loss of the transfer cells and were <5% of wild-type seed weight. These results demonstrate that Sus plays a rate-limiting role in the initiation and elongation of the single-celled fibers. These analyses also show that suppression of Sus only in the maternal seed tissue represses fiber development without affecting embryo development and seed size. Additional suppression in the endosperm and embryo inhibits their own development, which blocks the formation of adjacent seed coat transfer cells and arrests seed development entirely.  相似文献   

6.
7.
Abstract

Seed formation involves not only the embryo and endosperm development, but also the formation of a series of either ephemeral or non-ephemeral structures. In this article, we study several of those structures in Cytisus multiflorus and Cytisus striatus. The endosperm development is first nuclear and later cellular, except for the chalazal area, whose development is always nuclear. It generates, in the early developmental stages, a sac-like haustorium. As the seed develops, two structures seem to be closely related to nutrient mobilization to the embryo sac: on the one hand, a group of cells and a channel, located in the chalazal area and closely related between them and to the endosperm haustorium, which could be interpreted as a hypostase and on the other hand, an endothelium, derived from the inner integument, which later degenerates leaving no trace in the mature seed. All of these structures would be associated with the directionality of assimilates from ovule tissues to embryo sac. In mature seed and surrounding the embryo appears a unicellular layer of cells rich in proteins (aleurone layer), which is the origin of the outermost layer of the cellular endosperm. The seed coat is made up only of the outer integument.  相似文献   

8.
9.
Ingouff M  Jullien PE  Berger F 《The Plant cell》2006,18(12):3491-3501
Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly triggers sustained cell proliferation in the seed coat. Cell proliferation and differentiation of the seed coat occur in autonomous seeds produced in the absence of fertilization of the multicopy suppressor of ira1 (msi1) mutant. As msi1 autonomous seeds mostly contain autonomous endosperm, our results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat. We analyze the effect of autonomous proliferation in the retinoblastoma-related1 (rbr1) female gametophyte on seed coat development. In contrast with msi1, supernumerary nuclei in rbr1 female gametophytes originate mainly from the endosperm precursor lineage but do not express an endosperm fate marker. In addition, defects of the rbr1 female gametophyte also reduce cell proliferation in the ovule integuments before fertilization and prevent further differentiation of the seed coat. Our data suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments and after fertilization between the endosperm and the seed coat.  相似文献   

10.
Data from this study show that the chalazal cyst is a consistent feature of the Brassicaceae that exhibits variation of potential taxonomic value. The U-shaped seeds of mustards comprise three development chambers: micropylar (MC), central (CC), and chalazal (ChC). Early in seed development the syncytial endosperm in the ChC becomes differentiated into a cyst that remains distinct from storage endosperm. In early syncytial stages, the cyst is stratified into three zones: (1) an apical zone containing nuclei, plastids and mitochondria, (2) a mid-zone rich in endomembranes but depleted of large organelles, and (3) a basal portion that is bordered by a labyrinthine wall. The basal zone has projections that range from foot-like extensions to thread-like haustoria that penetrate the underlying maternal chalazal proliferative tissues (CPT). No cell-to-cell connections occur between endosperm and maternal tissue, but the extensive labyrinthine walls closely invest cell lysate resulting from degradation of the CPT. Structural data from light, confocal and transmission electron microscopy suggest that the cyst is active in uptake and transport of metabolites into the developing seed. Four types of cyst reflecting position and size of the ChC are recognized. In general, they correlate with major tribes of Brassicaceae. Data support recent molecular studies indicating that classification of the Lepidieae is artificial and suggest that Thlaspi is a candidate for realignment. The most divergent morphology in a tribe is seen in the two species of the Hesperidae. Erysimum has a more typical chalazal chamber and cyst morphology while the tubular chalazal chamber and filiform cyst of Chorispora is of the most extreme type encountered in the survey. This suggests that the tribe is paraphyletic and should be reinvestigated to clarify relationships. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 144 , 375−394.  相似文献   

11.
Growth of the maize (Zea mays) endosperm is tightly regulated by maternal zygotic and sporophytic genes, some of which are subject to a parent-of-origin effect. We report here a novel gene, maternally expressed gene1 (meg1), which shows a maternal parent-of-origin expression pattern during early stages of endosperm development but biallelic expression at later stages. Interestingly, a stable reporter fusion containing the meg1 promoter exhibits a similar pattern of expression. meg1 is exclusively expressed in the basal transfer region of the endosperm. Further, we show that the putatively processed MEG1 protein is glycosylated and subsequently localized to the labyrinthine ingrowths of the transfer cell walls. Hence, the discovery of a parent-of-origin gene expressed solely in the basal transfer region opens the door to epigenetic mechanisms operating in the endosperm to regulate certain aspects of nutrient trafficking from the maternal tissue into the developing seed.  相似文献   

12.
13.
Genetic evidence is presented to show that the developmental stability of maternal cells in the pedicel at the base of maize seeds is determined by the genotype of the developing endosperm. An early degeneration and withdrawal of maternal cells from the endosperm of homozygous miniature (mn mn) seed mutants were arrested if mn plants were pollinated by the wild-type Mn pollen. Similarly, the stability of the wild-type, Mn mn, maternal cells was also dependent on whether or not these cells were associated with the normal (Mn) or the mutant (mn) endosperm on the same ear. Biochemical and cellular analyses indicated that developing mn kernels have extremely low (<0.5% of the wild type) to undetectable levels of both soluble and wall-bound invertase activities. Extracts from endosperm with a single copy of the Mn gene showed a significant increase in both forms of invertases, and we suggest it is the causal basis of the wild-type seed phenotype. Collectively, these data provide evidence that invertase-mediated maintenance of a physiological gradient of photosynthate between pedicel and endosperm constitutes the rate-limiting step in structural stability of maternal cells as well as normal development of endosperm and seed.  相似文献   

14.
The anatropous, bitegmic and crassinucellar ovule has a nuclear endosperm development. It is further characterized by a hypostase sensu lato. This hypostase being an integral part of the chalaza undergoes a secondary extension with it. At maturity the exalbuminous seed is partially pachychalazal and therefore two anatomically distinct larger parts can be distinguished in the mature seed coat. An endotegmen typifies the integumentary seed coat, while a saddle-shaped hypostase characterizes the chalazal seed coat. This seed coat shows several characteristics of the typical anacardiaceous pachychalazal seed. The cotyledons store lipids and protein as nutrient reserveS. A well-developed cuticle, cuticular layer, cutin and callose in the hypostase cell walls, as well as tannin-like deposits in the seed coat, protect the physiologically ripe seed against dehydration.  相似文献   

15.
New data on endosperm development in the early-divergent angiosperm Trithuria (Hydatellaceae) indicate that double fertilization results in formation of cellularized micropylar and unicellular chalazal domains with contrasting ontogenetic trajectories, as in waterlilies. The micropylar domain ultimately forms the cellular endosperm in the dispersed seed. The chalazal domain forms a single-celled haustorium with a large nucleus; this haustorium ultimately degenerates to form a space in the dispersed seed, similar to the chalazal endosperm haustorium of waterlilies. The endosperm condition in Trithuria and waterlilies resembles the helobial condition that characterizes some monocots, but contrasts with Amborella and Illicium, in which most of the mature endosperm is formed from the chalazal domain. The precise location of the primary endosperm nucleus governs the relative sizes of the chalazal and micropylar domains, but not their subsequent developmental trajectories. The unusual tissue layer surrounding the bilobed cotyledonary sheath in seedlings of some species of Trithuria is a belt of persistent endosperm, comparable with that of some other early-divergent angiosperms with a well-developed perisperm, such as Saururaceae and Piperaceae. The endosperm of Trithuria is limited in size and storage capacity but relatively persistent.  相似文献   

16.
17.
The ovule is anatropous and bitegmic. The nuceIlar cells have disorganized except the chalazal proliferating tissue. The curved embryo sac comprises an egg apparatus and a central cell with two palar nuclei and wall ingrowths on its micropylar lateral wall. The antipodal cells disappear. Embryo development is of the Onagrad type. The filament suspensor grows to a length of 785 μm and degenerats at tarpedo embryo stage. The basal cell produces wall ingrowths on the micropylar end wall and lateral wall. The cells of mature embryo contain many globular protein bodies, 2.5–7.5 μm in diameter, composed of high concentration of protein and phytin, insoluble polysaccharide and lipid. The cells, except procambium, also contain many small starch grains. Some secretory cavities scattered in the ground tissue have liquidlike granules composed of protein, ploysacchaide and lipid. Endosperm development follows the nuclear pattern. At the late heart embryo stage, the endosperm around the embryo and the upper suspensor and the peripheral endosperm of the basal region of the U-shaped embryo sac becomes cellular. The endosperm at micropylar and chalazal ends remains free nuclear phase until the late bended cotyledon stage. Wall ingrowths at both micropylar and chalazal end wall and lateral wall of the embryo sac become more massive during endosperm development. Wall ingrowths also occur on the outer walls of the outer layer endosperm cells at both ends and lateral region of the embryo sac. When the embryo matures, many layers of chalazal endosperm ceils including 2–4 layers of transfer cells, a few of micropylar endosperm cells and 1–5 layers of peripheral endosperm cells are present. The nutrients of the embryo and endosperm at different stages of development are also discussed.  相似文献   

18.
Mohan Ram , H. Y. (U. Delhi, India.) The development of the seed in Andrographis serpyllifolia. Amer. Jour. Bot. 47(3) : 215—219. Illus. 1960.–Andrographis serpyllifolia, a member of the Acanthaceae, has an embryo sac with a bifurcated chalazal part. At the time of fertilization both synergids and antipodal cells disintegrate. Early in its development the endosperm is composed of 3 distinct parts: (1) a binucleate densely cytoplasmic chalazal haustorium; (2) a large binucleate micropylar haustorium; and (3) a central chamber which develops into the endosperm proper. The divisions in the central endosperm chamber are ab initio cellular. A few of the endosperm cells elongate enormously, ramify into the integument and destroy the surrounding cells. These cells have been termed secondary haustoria. Due to the unequal destruction of the integument, the endosperm assumes a ruminate condition. The mature seed is nearly naked because the seed coat is almost completely digested. The embryo has a long suspensor. The micropylar cells of the suspensor are hypertrophied and multinucleate. Contrary to Mauritzon's (1934) belief, the course of endosperm development is markedly different from that observed in Thunbergia. So far, albuminous seeds have been reported only in the subfamily Nelsonioideae. The present investigation provides a case of its occurrence in the Acanthoideae also.  相似文献   

19.
During seed development, coordinated developmental programs lead to the formation of the embryo, endosperm and seed coat. The maternal effects of the genes affected in the fertilisation-independent seed class of mutants play an important role in seed development. The plant Polycomb proteins MEDEA and FERTILIZATION-INDEPENDENT ENDOSPERM physically interact and form a complex, in a manner similar to that of their counterparts in animals. Maternal-effect phenotypes can result from regulation by genomic imprinting, a phenomenon of critical importance for both sexual and apomictic seed development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号