首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunometabolism has advanced our understanding of how the cellular environment and nutrient availability regulates immune cell fate. Not only are metabolic pathways closely tied to cell signaling and differentiation, but can induce different subsets of immune cells to adopt unique metabolic programs, influencing disease progression. Dysregulation of immune cell metabolism plays an essential role in the progression of several diseases including breast cancer (BC). Metabolic reprogramming plays a critical role in regulating T cell functions. CD8+ T cells are an essential cell type within the tumor microenvironment (TME). To induce antitumor responses, CD8+ T cells need to adapt their metabolism to fulfill their energy requirement for effective function. However, different markers and immunologic techniques have made identifying specific CD8+ T cells subtypes in BC a challenge to the field. This review discusses the immunometabolic processes of CD8+ T cell in the TME in the context of BC and highlights the role of CD8+ T cell metabolic changes in tumor progression.  相似文献   

2.
Prostate cancer (PCa) metabolism appears to be unique in comparison with other types of solid cancers. Normal prostate cells mainly rely on glucose oxidation to provide precursors for the synthesis and secretion of citrate, resulting in an incomplete Krebs cycle and minimal oxidative phosphorylation for energy production. In contrast, during transformation, PCa cells no longer secrete citrate and they reactivate the Krebs cycle as energy source. Moreover, primary PCas do not show increased aerobic glycolysis and therefore they are not efficiently detectable with 18F-FDG-PET. However, increased de novo lipid synthesis, strictly intertwined with deregulation in classical oncogenes and oncosuppressors, is an early event of the disease. Up-regulation and increased activity of lipogenic enzymes (including fatty acid synthase and choline kinase) occurs throughout PCa carcinogenesis and correlates with worse prognosis and poor survival. Thus, lipid precursors such as acetate and choline have been successfully used as alternative tracers for PET imaging. Lipid synthesis intermediates and FA catabolism also emerged as important players in PCa maintenance. Finally, epidemiologic studies suggested that systemic metabolic disorders including obesity, metabolic syndrome, and diabetes as well as hypercaloric and fat-rich diets might increase the risk of PCa. However, how metabolic disorders contribute to PCa development and whether dietary lipids and de novo lipids synthesized intra-tumor are differentially metabolized still remains unclear. In this review, we examine the switch in lipid metabolism supporting the development and progression of PCa and we discuss how we can exploit its lipogenic nature for therapeutic and diagnostic purposes. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   

3.
Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.  相似文献   

4.
Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.  相似文献   

5.
Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar proteome composition. Here we present 248 proteins identified in a subproteome analysis using lipid storage droplets of Drosophila melanogaster fat body tissue. In addition to previously known lipid droplet-associated PAT (Perilipin, ADRP, and TIP47) domain proteins and homologues of several mammalian lipid droplet proteins, this study identified a number of proteins of diverse biological function, including intracellular trafficking supportive of the dynamic and multifaceted character of these organelles. We performed intracellular localization studies on selected newly identified subproteome members both in tissue culture cells and in fat body cells directly. The results suggest that the lipid droplets of fat body cells are of combinatorial protein composition. We propose that subsets of lipid droplets within single cells are characterized by a protein "zip code," which reflects functional differences or specific metabolic states.  相似文献   

6.
Zhu A  Marcus DM  Shu HK  Shim H 《Radiation research》2012,177(4):436-448
Positron emission tomography (PET) is a noninvasive imaging technique that provides functional or metabolic assessment of normal tissue or disease conditions and is playing an increasing role in cancer radiotherapy planning. (18)F-Fluorodeoxyglucose PET imaging (FDG-PET) is widely used in the clinic for tumor imaging due to increased glucose metabolism in most types of tumors; its role in radiotherapy management of various cancers is reviewed. In addition, other metabolic PET imaging agents at various stages of preclinical and clinical development are reviewed. These agents include radiolabeled amino acids such as methionine for detecting increased protein synthesis, radiolabeled choline for detecting increased membrane lipid synthesis, and radiolabeled acetate for detecting increased cytoplasmic lipid synthesis. The amino acid analogs choline and acetate are often more specific to tumor cells than FDG, so they may play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with either low FDG uptake or high background FDG uptake. PET imaging with FDG and other metabolic PET imaging agents is playing an increasing role in complementary radiotherapy planning.  相似文献   

7.
Dendritic cells (DCs) play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs) were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay), upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+CD8α- DCs, CD4-CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.  相似文献   

8.
细胞内脂滴是一种代谢活跃的细胞器,脂滴表面蛋白在脂滴的代谢调节中起到了重要作用。ADRP是一种重要的脂滴表面蛋白,在机体组织和细胞内广泛表达。脂肪肝、动脉粥样硬化、糖尿病等均伴随脂质的异常蓄积,近年来的研究表明ADRP参与这些疾病的发生发展。本文就ADRP在各组织和器官正常的生理功能以及对疾病状态的调控加以综述。  相似文献   

9.
Yang L  Ding Y  Chen Y  Zhang S  Huo C  Wang Y  Yu J  Zhang P  Na H  Zhang H  Ma Y  Liu P 《Journal of lipid research》2012,53(7):1245-1253
Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle.  相似文献   

10.
AX Santos  H Riezman 《FEBS letters》2012,586(18):2858-2867
Lipids are essential eukaryotic cellular constituents. Lipid metabolism has a strong impact on cell physiology, and despite good progress in this area, many important basic questions remain unanswered concerning the functional diversity of lipid species and on the mechanisms that cells employ to sense and adjust their lipid composition. Combining convenient experimental tractability, a large degree of conservation of metabolic pathways with other eukaryotes and the relative simplicity of its genome, proteome and lipidome, yeast represents the most advantageous model organism for studying lipid homeostasis and function. In this review we will focus on the importance of yeast as a model organism and some of the innovative advantages for the lipid research field.  相似文献   

11.
Lipid metabolism reprogramming plays important role in cell growth, proliferation, angiogenesis and invasion in cancers. However, the diverse lipid metabolism programmes and prognostic value during glioma progression remain unclear. Here, the lipid metabolism‐related genes were profiled using RNA sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblastoma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol metabolic progress. According to the differential genes of lipid metabolism between LGG and GBM, we developed a nine‐gene set using Cox proportional hazards model with elastic net penalty, and the CGGA cohort was used for validation data set. Survival analysis revealed that the obtained gene set could differentiate the outcome of low‐ and high‐risk patients in both cohorts. Meanwhile, multivariate Cox regression analysis indicated that this signature was a significantly independent prognostic factor in diffuse gliomas. Gene ontology and GSEA showed that high‐risk cases were associated with phenotypes of cell division and immune response. Collectively, our findings provided a new sight on lipid metabolism in diffuse gliomas.  相似文献   

12.
13.
In this review article we describe characterization of intracellular lipid particles of three different eukaryotic species, namely mammalian cells, plants and yeast. Lipid particles of all types of cells share a general structure. A hydrophobic core of neutral lipids is surrounded by a membrane monolayer of phospholipids which contains a minor amount of proteins. Whereas lipid particles from mammalian cells and plants harbor specific classes of polypeptides, mainly perilipins and oleosins, respectively, yeast lipid particles contain a more complex set of enzymes which are involved in lipid biosynthesis. Function of lipid particles as storage compartment and metabolic organelle, and their interaction with other subcellular fractions are discussed. Furthermore, models for the biogenesis of lipid particles are presented and compared among the different species.  相似文献   

14.
Lipid rafts are established as critical structures for a variety of cellular processes, including immune cell activation. Beyond their importance for initial immune cell activation at the immunological synapse, lipid rafts are now also being recognized as important sites for cytokine and growth factor signal transduction, both in immune cells as part of secondary regulatory processes, and in non-immune cells. This review summarizes current knowledge regarding the roles of rafts in cytokine signaling and emphasizes the need for measures to better standardize the study of rafts.  相似文献   

15.
陈久洲  李烨  王小元 《微生物学通报》2010,37(11):1685-1691
类脂A是革兰氏阴性细菌细胞外膜外侧脂多糖的主要组成成分,也是内毒素的活性成分,可以被宿主免疫细胞识别并引发疾病。类脂A的生物合成途径相对保守,但在转运到外膜外侧的过程中它的结构被修饰以适应不同的外界环境。类脂A的结构修饰在细菌体内受到严格调控,与细菌的毒性密切相关,却不影响细菌的生长繁殖。主要介绍近几年类脂A结构修饰方面的研究进展,在此基础上分析了类脂A结构修饰在病原菌防治、疫苗开发、工业发酵和食品安全等相关领域的应用前景。  相似文献   

16.
Lipid rafts are specific microdomains of plasma membrane which are enriched in cholesterol and sphingolipids. These domains seem to favour the interactions of particular proteins and the regulation of signalling pathways in the cells. Recent data have shown that among the proteins, which are preferentially localized in lipid rafts, are connexins that are the structural proteins of gap junctions. Since gap junctional intercellular communication is involved in various cellular processes and pathologies such as cancer, we were interested to review the various observations concerning this specific localization of connexins in lipid rafts and its consequences on gap junctional intercellular communication capacity. In particular, we will focus our discussion on the role of the lipid raft-connexin connection in cancer progression. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

17.
Colletotrichum graminicola, a pathogen of sorghum and corn, was investigated prior and during germination as to certain aspects of acid phosphatase activity and lipid mobilization. Ungerminated conidia cytoplasm was filled with lipid deposits, which were mobilized during the germination process. Cytochemical ultrastructural examination showed that conidia vacuoles exhibit acid phosphatase activity, which is suggestive of lytic activity. Lipid bodies, stored in the ungerminated conidia cytoplasm, were internalized by vacuoles in a process analogous to microautophagy and were apparently digested inside them. The lipid bodies disappeared and vacuoles became enlarged in conidial cells during germination. Appressoria also showed acid phosphatase activity in multiple heterogeneous vesicles which were, in most cases, juxtaposed with lipid bodies. These results suggest that the vacuolar system plays an important role during C. graminicola germination and that the initial stages of lipid metabolization are taking place inside the vacuoles.  相似文献   

18.
Metabolic reprogramming of cells from the innate immune system is one of the most noteworthy topics in immunological research nowadays. Upon infection or tissue damage, innate immune cells, such as macrophages, mobilize various immune and metabolic signals to mount a response best suited to eradicate the threat. Current data indicate that both the immune and metabolic responses are closely interconnected. On account of its peculiar position in regulating both of these processes, the mitochondrion has emerged as a critical organelle that orchestrates the coordinated metabolic and immune adaptations in macrophages. Significant effort is now underway to understand how metabolic features of differentiated macrophages regulate their immune specificities with the eventual goal to manipulate cellular metabolism to control immunity. In this review, we highlight some of the recent work that place cellular and mitochondrial metabolism in a central position in the macrophage differentiation program.  相似文献   

19.
Immunometabolism is an emerging field of investigation at the interface between the historically distinct disciplines of immunology and metabolism. Accelerating interest in this area is being fuelled by the obesity epidemic and the relatively recent realization that obesity affects the immune system and promotes inflammation, and that obesity-induced inflammation potentially promotes a variety of chronic conditions and diseases. The multilevel interactions between the metabolic and immune systems suggest pathogenic mechanisms that may underlie many of the downstream complications of obesity and offer substantial therapeutic promise.  相似文献   

20.
In the past fifteen years the notion that cell membranes are not homogenous and rely on microdomains to exert their functions has become widely accepted. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. They play a role in cellular physiological processes such as signalling, and trafficking but are also thought to be key players in several diseases including viral or bacterial infections and neurodegenerative diseases. Yet their existence is still a matter of controversy. Indeed, lipid raft size has been estimated to be around 20 nm, far under the resolution limit of conventional microscopy (around 200 nm), thus precluding their direct imaging. Up to now, the main techniques used to assess the partition of proteins of interest inside lipid rafts were Detergent Resistant Membranes (DRMs) isolation and co-patching with antibodies. Though widely used because of their rather easy implementation, these techniques were prone to artefacts and thus criticized. Technical improvements were therefore necessary to overcome these artefacts and to be able to probe lipid rafts partition in living cells. Here we present a method for the sensitive analysis of lipid rafts partition of fluorescently-tagged proteins or lipids in the plasma membrane of living cells. This method, termed Fluorescence Correlation Spectroscopy (FCS), relies on the disparity in diffusion times of fluorescent probes located inside or outside of lipid rafts. In fact, as evidenced in both artificial membranes and cell cultures, probes would diffuse much faster outside than inside dense lipid rafts. To determine diffusion times, minute fluorescence fluctuations are measured as a function of time in a focal volume (approximately 1 femtoliter), located at the plasma membrane of cells with a confocal microscope (Fig. 1). The auto-correlation curves can then be drawn from these fluctuations and fitted with appropriate mathematical diffusion models. FCS can be used to determine the lipid raft partitioning of various probes, as long as they are fluorescently tagged. Fluorescent tagging can be achieved by expression of fluorescent fusion proteins or by binding of fluorescent ligands. Moreover, FCS can be used not only in artificial membranes and cell lines but also in primary cultures, as described recently. It can also be used to follow the dynamics of lipid raft partitioning after drug addition or membrane lipid composition change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号