首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species' geographic range limits are most often not demarcated by obvious dispersal barriers. Poor‐quality habitat at the edge of a species' range can prevent range expansion by preventing outward migration or through reducing adaptive potential resulting from decreased genetic diversity. We identified habitat variables that constrain gene flow across the entire geographic range of an endemic salamander (Ambystoma barbouri) in the eastern United States, and we tested whether increased resistance resulting from these variables provides cryptic dispersal barriers at the range edges. Using polymorphic microsatellite loci, we first identified three genetic clusters that are separated by the Ohio and Kentucky rivers. Through a combination of landscape genetic analyses and generalized dissimilarity modelling, we then classified variables that (i) restrict gene flow in each of the genetic clusters across the geographic distribution of A. barbouri and (ii) become more common towards the peripheries of the distribution. A decrease in limestone availability and an increase in growing season precipitation were correlated with high resistance to gene flow across the range, and both became more common at the edges of the species' distribution. However, other landscape variables were more important for explaining variation in geneflow rates in different portions of the range, such as increased mean annual temperature and frost‐free period in the south vs. growing season precipitation in the north. Taken together, these results suggest that there are both range‐wide and regionally specific cryptic habitat barriers preventing geographic range expansion. Species ‘geographic range limits are probably governed by a set of ecological and evolutionary factors, and our landscape genetic approach could be applied to gain additional insight into many systems.  相似文献   

2.
Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism‐based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high‐density Affymetrix Axiom® genotyping array (the Wheat Breeders’ Array), in a high‐throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site ‘CerealsDB’.  相似文献   

3.
Landraces often contain genetic diversity that has been lost in modern cultivars, including alleles that confer enhanced local adaptation. To comprehensively identify loci associated with adaptive traits in soya bean landraces, for example flowering time, a population of 1938 diverse landraces and 97 accessions of the wild progenitor of cultivated soya bean, Glycine soja was genotyped using tGBS®. Based on 99 085 high‐quality SNPs, landraces were classified into three sub‐populations which exhibit geographical genetic differentiation. Clustering was inferred from STRUCTURE, principal component analyses and neighbour‐joining tree analyses. Using phenotypic data collected at two locations separated by 10 degrees of latitude, 17 trait‐associated SNPs (TASs) for flowering time were identified, including a stable locus Chr12:5914898 and previously undetected candidate QTL/genes for flowering time in the vicinity of the previously cloned flowering genes, E1 and E2. Using passport data associated with the collection sites of the landraces, 27 SNPs associated with adaptation to three bioclimatic variables (temperature, daylength, and precipitation) were identified. A series of candidate flowering genes were detected within linkage disequilibrium (LD) blocks surrounding 12 bioclimatic TASs. Nine of these TASs exhibit significant differences in flowering time between alleles within one or more of the three individual sub‐populations. Signals of selection during domestication and/or subsequent landrace diversification and adaptation were detected at 38 of the 44 flowering and bioclimatic TASs. Hence, this study lays the groundwork to begin breeding for novel environments predicted to arise following global climate change.  相似文献   

4.
New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define ‘mini-core’ sets of accessions capturing the majority of the allelic diversity present in the core collection. These ‘mini-core’ sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of ‘hull cover’, ‘spike row number’, and ‘heading date’ demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections.  相似文献   

5.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

6.

Background  

Among the cereal crops, barley is the species with the greatest adaptability to a wide range of environments. To determine the level and structure of genetic diversity in barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia, we have examined the molecular variation at seven nuclear microsatellite loci.  相似文献   

7.
The pool of Western Mediterranean landraces has been under-utilised for barley breeding so far. The objectives of this study were to assess genetic diversity in a core collection of inbred lines derived from Spanish barley landraces to establish its relationship to barleys from other origins, and to correlate the distribution of diversity with geographical and climatic factors. To this end, 64 SSR were used to evaluate the polymorphism among 225 barley (Hordeum vulgare ssp. vulgare) genotypes, comprising two-row and six-row types. These included 159 landraces from the Spanish barley core collection (SBCC) plus 66 cultivars, mainly from European countries, as a reference set. Out of the 669 alleles generated, a large proportion of them were unique to the six-row Spanish barleys. An analysis of molecular variance revealed a clear genetic divergence between the six-row Spanish barleys and the reference cultivars, whereas this was not evident for the two-row barleys. A model-based clustering analysis identified an underlying population structure, consisting of four main populations for the whole genotype set, and suggested further possible subdivision within two of these populations. Most of the six-row Spanish landraces clustered into two groups that corresponded to geographic regions with contrasting environmental conditions. The existence of wide genetic diversity in Spanish germplasm, possibly related to adaptation to a broad range of environmental conditions, and its divergence from current European cultivars confirm its potential as a new resource for barley breeders, and make the SBCC a valuable tool for the study of adaptation in barley. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Fluorescence microsatellite markers were employed to reveal genetic diversity of 340 wheat accessions consisting of 229 landraces and 111 modern varieties from the Northwest Spring Wheat Region in China. The 340 accessions were chosen as candidate core collections for wheat germplasm in this region. A core collection representing the genetic diversity of these accessions was identified based on a cluster dendrogram of 78 SSR loci. A total of 967 alleles were detected with a mean of 13.6 alleles (5–32) per locus. Mean PIC was 0.64, ranged from 0.05 to 0.91. All loci were distributed relatively evenly in the A, B and D wheat genomes. Mean genetic richness of A, B and D genomes for both landraces and modern varieties was B > A > D. However, mean genetic diversity indices of landraces changed to B > D > A. As a whole, genetic diversity of the landraces was considerably higher than that of the modern varieties. The big difference of genetic diversity indices in the three genomes suggested that breeding has exerted greater selection pressure in the D than the A or B genomes in this region. Changes of allelic proportions represented in the proposed core collection at different sampling scales suggested that the sampling percentage of the core collection in the Northwest Spring Wheat Region should be greater than 4% of the base collection to ensure that more than 70% of the variation is represented by the core collection. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
A set of 107 hulless barley (Hordeum vulgare L. subsp. vulgare) landraces originally collected from the highlands of Nepal along the Annapurna and Manaslu Himalaya range were studied for genetic relatedness and population differentiation using simple sequence repeats (SSRs). The 44 genome covering barley SSRs applied in this study revealed a high level of genetic diversity among the landraces (diversity index, DI = 0.536) tested. The genetic similarity (GS) based UPGMA clustering and Bayesian Model-based (MB) structure analysis revealed a complex genetic structure of the landraces. Eight genetically distinct populations were identified, of which seven were further studied for diversity and differentiation. The genetic diversity estimated for all and each population separately revealed a hot spot of genetic diversity at Pisang (DI = 0.559). The populations are fairly differentiated (θ = 0.433, R ST = 0.445) accounting for > 40% of the genetic variation among the populations. The pairwise population differentiation test confirmed that many of the geographic populations significantly differ from each other but that the differentiation is independent of the geographic distance (r = 0.224, P > 0.05). The high level of genetic diversity and complex population structure detected in Himalayan hulless barley landraces and the relevance of the findings are discussed.  相似文献   

10.
 A barley lambda-phage library was screened with (GA)n and (GT)n probes for developing microsatellite markers. The number of repeats ranged from 2 to 58 for GA and from 2 to 24 for GT. Fifteen selected microsatellite markers were highly polymorphic for barley. These microsatellite markers were used to estimate the genetic diversity among 163 barley genotypes chosen from the collection of the IPK Genebank, Germany. A total of 130 alleles were detected by 15 barley microsatellite markers. The number of alleles per microsatellite marker varied from 5 to 15. On average 8.6 alleles per locus were observed. Except for GMS004 all other barley microsatellite markers showed on average a high value of gene diversity ranging from 0.64 to 0.88. The mean value of gene diversity in the wild forms and landraces was 0.74, and even among the cultivars the gene diversity ranged from 0.30 to 0.86 with a mean of 0.72. No significant differences in polymorphism were detected by the GA and GT microsatellite markers. The estimated genetic distances revealed by the microsatellite markers were, on average , 0.75 for the wild forms, 0.72 for landraces and 0.70 among cultivars. The microsatellite markers were able to distinguish between different barley genotypes. The high degree of polymorphisms of microsatellite markers allows a rapid and efficient identification of barley genotypes. Received: 26 November 1997 / Accepted: 19 January 1998  相似文献   

11.
Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small‐scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine‐scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.  相似文献   

12.
Distribution of MWG699 polymorphism in Spanish European barleys.   总被引:3,自引:0,他引:3  
The STS marker MWG699/TaqI is closely linked to the vrs1 locus and has been proposed as a marker of domestication in barley. This study included 257 cultivated barleys of both two- and six-rowed varieties, mainly from the western Mediterranean region. These included many landraces from the Spanish barley core collection, Moroccan landraces, and a set of accessions from other European countries. Restriction analysis of amplified DNA revealed three alleles, as previously described. Most of the two-rowed entries had the same allele, type K. Six-rowed entries showed both types A and D. Indeed, type D was widespread among Spanish landraces and commercial varieties from central Europe. It was also found in some two-rowed landraces originating from Spain and Morocco. Barleys with the D haplotype were predominantly winter types, whereas the A haplotype was evenly distributed among spring and winter types. These results support the existence of two different genetic sources among six-rowed Spanish landraces.  相似文献   

13.
Seven thousand years of barley cultivation under the environmental hardships typical of the Mediterranean climate have generated genetic singularity of the Spanish barleys, consistently reported in the literature. From the Spanish National Collection of 2289 accessions, a core subset with 159 landraces and 16 old varieties was constituted. Twenty-seven characters were evaluated for the core collection, to define the structure of the diversity. Several evaluation trials were carried out in 1999-2000, whereas yield trials were performed in earlier years. Phenotypic diversity was large for most of the characters studied. Comparisons of genetic diversity between the core and the original collections suggested that the core is a good representation of the existing diversity in the BNG. Comparisons with results of studies on Spanish materials from other collections seem to indicate that the Spanish diversity is not well represented in some world collections. Principal component analyses for quantitative and qualitative characters revealed a clear distinction between two- and six-row cultivars, and also between landraces and commercial varieties. Geographical origins of the landraces were correlated with grain yield, heading date, duration of grain filling period, and growth class. In relation to diseases, altitude played an important role on the resistance to powdery mildew and brown rust. For brown rust, all the resistant landraces came from low altitudes. These geographical gradients seemed consistent with prior knowledge about barley adaptation, and would confirm the agreement between passport data and true adaptive origin of these landraces from a geographical point of view.  相似文献   

14.
Phytophthora capsici is an important oomycete pathogen threatening the vegetable production in China, but very little is known about its population structure. The objective of the present study was to evaluate the genetic diversity of 49 P. capsici isolates obtained from 2007 to 2014 at nine provincial locations in China. Isolates were assessed for mating type, metalaxyl resistance and simple sequence repeat (SSR) genotype. Mating‐type analyses of the isolates showed that both mating types were present in all of the sampled production regions, and the mating‐type frequency in the total Chinese population did not deviate significantly from a 1:1 ratio. Responses of isolates to the fungicide metalaxyl indicated the presence of intermediate resistance to metalaxyl among the field population. A universal fluorescent labelling method was adapted in this study to improve the efficiency of SSR genotyping. Microsatellite genotyping of the isolates using seven SSR markers revealed 44 unique multilocus genotypes. Genetic analyses indicated the existence of two genetic clusters within Chinese P. capsici collection. Clonal reproduction may play a more prominent role in Yunnan Province, but non‐existence of repeated genotypes and existence of both mating types throughout all regions suggest outcrossing and sexual recombination likely play an important role in the overall epidemiology in China. Future studies would include expanded scale sampling at single regions over multiple years to better define the genetic diversity of P. capsici in China.  相似文献   

15.
Extreme climate, especially temperature, can severely reduce wheat yield. As global warming has already begun to increase mean temperature and the occurrence of extreme temperatures, it has become urgent to accelerate the 5–20 year process of breeding for new wheat varieties, to adapt to future climate. We analyzed the patterns of frost and heat events across the Australian wheatbelt based on 50 years of historical records (1960–2009) for 2864 weather stations. Flowering dates of three contrasting‐maturity wheat varieties were simulated for a wide range of sowing dates in 22 locations for ‘current’ climate (1960–2009) and eight future scenarios (high and low CO2 emission, dry and wet precipitation scenarios, in 2030 and 2050). The results highlighted the substantial spatial variability of frost and heat events across the Australian wheatbelt in current and future climates. As both ‘last frost’ and ‘first heat’ events would occur earlier in the season, the ‘target’ sowing and flowering windows (defined as risk less than 10% for frost (<0 °C) and less than 30% for heat (>35 °C) around flowering) would be shifted earlier by up to 2 and 1 month(s), respectively, in 2050. A short‐season variety would require a shift in target sowing window 2‐fold greater than long‐ and medium‐season varieties by 2050 (8 vs. 4 days on average across locations and scenarios, respectively), but would suffer a lesser decrease in the length of the vegetative period (4 vs. 7 days). Overall, warmer winters would shorten the wheat season by up to 6 weeks, especially during preflowering. This faster crop cycle is associated with a reduced time for resource acquisition, and potential yield loss. As far as favourable rain and modern equipment would allow, early sowing and longer season varieties (i.e. in current climate) would be the best strategies to adapt to future climates.  相似文献   

16.
The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total of 1,160 SSR alleles at 59 SSR loci were detected including 97 unique and 485 low-frequency alleles, which indicated great richness and uniqueness of genetic variation in this core collection. Seven clusters were inferred by STRUCTURE analysis, which is in good agreement with a neighbor-joining tree. The cluster subdivision was also supported by highly significant pairwise F st values and was generally in accordance with differences in planting area and sowing season. The cluster HSuM, which contains accessions collected from the region between 32.0 and 40.5°N, 105.4 and 122.2°E along the central and downstream parts of the Yellow River, was the most genetically diverse of the seven clusters. This provides the first molecular evidence for the hypotheses that the origin of cultivated soybean is the Yellow River region. A high proportion (95.1%) of pairs of alleles from different loci was in LD in the complete dataset. This was mostly due to overall population structure, since the number of locus pairs in LD was reduced sharply within each of the clusters compared to the complete dataset. This shows that population structure needs to be accounted for in association studies conducted within this collection. The low value of LD within the clusters can be seen as evidence that much of the recombination events in the past have been maintained in soybean, fixed in homozygous self-fertilizing landraces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type – and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches.  相似文献   

18.
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low‐copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD‐rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome‐wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.  相似文献   

19.
 Studies of allelic variations at six isozyme loci revealed genetic diversity of 380 East Asian accessions of the Barley Core Collection. Genetic variation was found in both cultivars and landraces in different regions. Allelic variations at the Aco-1 and Aco-2 loci were detected for East Asian barley for the first time. Moreover, the Aco-1 locus displayed the highest genetic diversity among the six loci assayed. Indian cultivars showed the highest diversity, followed by Korean and Chinese cultivars. Landraces from Bhutan and Nepal showed the lowest diversity. Cultivars had generally higher diversity than landraces within as well as among regions. The cluster analysis of genetic identity showed that all landraces from different countries can be placed in one group; the cultivars from Japan, India and Korea each form independent groups. Gpi-1 Gu, Pgd-1 Tj, Aco-1 Si, Ndh-2 D and Aco-2 A were rare alleles found in only a few accessions of 6-rowed barley. The Pgd-2 Tn allele was very rare in East Asian accessions. Received: 29 July 1998 / Accepted: 2 November 1998  相似文献   

20.
Eighteen polymorphic microsatellite loci and 11 single‐nucleotide polymorphisms were genotyped in 1 095 individual Hessian fly specimens representing 23 populations from North America, southern Europe, and southwest Asia. The genotypes were used to assess genetic diversity and interrelationship of Hessian fly populations. While phylogenetic analysis indicates that the American populations most similar to Eurasian populations come from the east coast of the United States, genetic distance is least between (Alabama and California) and (Kazakhstan and Spain). Allelic diversity and frequency vary across North America, but they are not correlated with distance from the historically documented point of introduction in New York City or with temperature or precipitation. Instead, the greatest allelic diversity mostly occurs in areas with Mediterranean climates. The microsatellite data indicate a general deficiency for heterozygotes in Hessian fly. The North American population structure is consistent with multiple introductions, isolation by distance, and human‐abetted dispersal by bulk transport of puparia in infested straw or on harvesting equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号