共查询到20条相似文献,搜索用时 0 毫秒
1.
《Current biology : CB》2021,31(19):4397-4404.e2
- Download : Download high-res image (172KB)
- Download : Download full-size image
2.
Aude Cincotta Thanh Thuy Nguyen Tu Julien L. Colaux Guy Terwagne Sylvie Derenne Pascal Godefroit Robert Carleer Christelle Anquetil Johan Yans 《Palaeontology》2020,63(5):841-863
A panel of geochemical techniques is used here to investigate the taphonomy of fossil feathers preserved in association with the skeleton of the Jurassic theropod Anchiornis huxleyi. Extant feathers were analysed in parallel to test whether the soft tissues morphologically preserved in the fossil also exhibit a high degree of chemical preservation. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicate that clays and iron oxide pseudomorphs occur in the surrounding sediment and also reveal the preservation of melanosome-like microbodies in the fossil. Carbon gradient along a depth profile and co-occurrence of carbon and sulphur are shown in the fossil by elastic backscattering (EBS) and particle-induced x-ray emission (PIXE), which are promising techniques for the elemental analysis of fossil soft tissues. The molecular composition of modern and fossil soft tissues was assessed from micro-attenuated total reflectance fourier transform infrared spectroscopy (micro-ATR FTIR), solid-state 13C nuclear magnetic resonance (CP-MAS 13C NMR) and pyrolysis gas chromatography mass spectrometry in the presence of TMAH (TMAH-Py-GC-MS). Results indicate that the proteinaceous material that comprises the modern feathers is not present in the fossil feathers. The fossil feathers and the embedding sediment exhibit a highly aliphatic character. However, substantial differences exist between these samples, revealing that the organic matter of the fossil feathers is, at least partially, derived from original constituents of the feathers. Our results suggest that, despite the morphological preservation of Anchiornis feathers, original proteins, that is keratin, were probably not preserved in the 160-myr-old feathers. 相似文献
3.
Derek E. G. Briggs 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1666)
Harry Whittington''s 1975 monograph on Opabinia was the first to highlight how some of the Burgess Shale animals differ markedly from those that populate today''s oceans. Categorized by Stephen J. Gould as a ‘weird wonder’ (Wonderful life, 1989) Opabinia, together with other unusual Burgess Shale fossils, stimulated ongoing debates about the early evolution of the major animal groups and the nature of the Cambrian explosion. The subsequent discovery of a number of other exceptionally preserved fossil faunas of Cambrian and early Ordovician age has significantly augmented the information available on this critical interval in the history of life. Although Opabinia initially defied assignment to any group of modern animals, it is now interpreted as lying below anomalocaridids on the stem leading to the living arthropods. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. 相似文献
4.
Valentina Rossi;Massimo Bernardi;Mariagabriella Fornasiero;Fabrizio Nestola;Richard Unitt;Stefano Castelli;Evelyn Kustatscher; 《Palaeontology》2024,67(1):e12690
Tridentinosaurus antiquus represents one of the oldest fossil reptiles and one of the very few skeletal specimens with evidence of soft tissue preservation from the Cisuralian (Early Permian) of the Italian Alps. The preservation and appearance of the fossil have puzzled palaeontologists for decades and its taphonomy and phylogenetic position have remained unresolved. We reanalysed T. antiquus using ultraviolet light (UV), 3D surface modelling, scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), micro x-ray diffraction (μ-XRD), Raman and attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopy to determine the origin of the body outline and test whether this represents the remains of organically preserved soft tissues which in turn could reveal important anatomical details about this enigmatic protorosaur. The results reveal, however, that the material forming the body outline is not fossilized soft tissues but a manufactured pigment indicating that the body outline is a forgery. Our discovery poses new questions about the validity of this enigmatic taxon. 相似文献
5.
William I. Ausich Christoph Bartels Thomas W. Kammer 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2013,46(3):416-420
Fossilized tube feet are described on Codiacrinus schultzei Follmann from the Lower Devonian Hunsrück Slate of Germany. This is the first definitive proof of tube feet on any fossil crinoid. Three lightly pyritized, flattened tube feet are preserved in a single interray of this cladid crinoid. The tube feet were at least 7 mm long. Their preservation is very similar to the tube feet reported previously from a Hunsrück ophiuroid, except that the Codiacrinus tube feet have small papillae, similar to living crinoids. 相似文献
6.
A key feature of the pigment melanin is its high binding affinity for trace metal ions. In modern vertebrates trace metals associated with melanosomes, melanin‐rich organelles, can show tissue‐specific and taxon‐specific distribution patterns. Such signals preserve in fossil melanosomes, informing on the anatomy and phylogenetic affinities of fossil vertebrates. Fossil and modern melanosomes, however, often differ in trace metal chemistry; in particular, melanosomes from fossil vertebrate eyes are depleted in Zn and enriched in Cu relative to their extant counterparts. Whether these chemical differences are biological or taphonomic in origin is unknown, limiting our ability to use melanosome trace metal chemistry to test palaeobiological hypotheses. Here, we use maturation experiments on eye melanosomes from extant vertebrates and synchrotron rapid scan‐x‐ray fluorescence analysis to show that thermal maturation can dramatically alter melanosome trace element chemistry. In particular, maturation of melanosomes in Cu‐rich solutions results in significant depletion of Zn, probably due to low pH and competition effects with Cu. These results confirm fossil melanosome chemistry is susceptible to alteration due to variations in local chemical conditions during diagenesis. Maturation experiments can provide essential data on melanosome chemical taphonomy required for accurate interpretations of preserved chemical signatures in fossils. 相似文献
7.
Javier Ortega‐Hernández Rudy Lerosey‐Aubril Carlo Kier Enrico Bonino 《Palaeontology》2015,58(2):265-276
We describe a weakly biomineralized non‐trilobite artiopodan arthropod from the Guzhangian Weeks Formation of Utah. Falcatamacaris bellua gen. et sp. nov. is typified by a thin calcitic cuticle, broad cephalon without eyes or dorsal ecdysial sutures, an elongate trunk with distinctively sickle‐shaped pleural spines and a long tailspine with a bifurcate termination. The precise affinities of Falcatamacaris gen. nov. are problematic due to the presence of unique features within Artiopoda, such as the peculiar morphology of the pleural and posterior regions of the trunk. Possible affinities with aglaspidid‐like arthropods and concilitergans are discussed based on the possession of 11 trunk tergites, edge‐to‐edge articulations and overall body spinosity. The new taxon highlights the importance of the Weeks Formation Konservat‐Lagerstätte for further understanding the diversity of extinct arthropod groups in the upper Cambrian. 相似文献
8.
Mary H. Schweitzer Wenxia Zheng Timothy P. Cleland Mark B. Goodwin Elizabeth Boatman Elizabeth Theil Matthew A. Marcus Sirine C. Fakra 《Proceedings. Biological sciences / The Royal Society》2014,281(1775)
The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-αFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem ‘tissue fixation’ by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB − O2 > −O2 ≫ +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues. 相似文献
9.
DIEGO C. GARCÍA‐BELLIDO JOHN R. PATERSON GREGORY D. EDGECOMBE JAMES B. JAGO JAMES G. GEHLING MICHAEL S. Y. LEE 《Palaeontology》2009,52(6):1221-1241
Abstract: Abundant material from a new quarry excavated in the lower Cambrian Emu Bay Shale (Kangaroo Island, South Australia) and, particularly, the preservation of soft‐bodied features previously unknown from this Burgess Shale‐type locality, permit the revision of two bivalved arthropod taxa described in the late 1970s, Isoxys communis and Tuzoia australis. The collections have also produced fossils belonging to two new species: Isoxys glaessneri and Tuzoia sp. Among the soft parts preserved in these taxa are stalked eyes, digestive structures and cephalic and trunk appendages, rivalling in quality and quantity those described from better‐known Lagerstätten, notably the lower Cambrian Chengjiang fauna of China and the middle Cambrian Burgess Shale of Canada. 相似文献
10.
Ben J. Slater Thomas H. P. Harvey Romain Guilbaud Nicholas J. Butterfield 《Palaeontology》2017,60(1):117-140
Exceptionally preserved ‘Burgess Shale‐type’ fossil assemblages from the Cambrian of Laurentia, South China and Australia record a diverse array of non‐biomineralizing organisms. During this time, the palaeocontinent Baltica was geographically isolated from these regions, and is conspicuously lacking in terms of comparable accessible early Cambrian Lagerstätten. Here we report a diverse assemblage of small carbonaceous fossils (SCFs) from the early Cambrian (Stage 4) File Haidar Formation of southeast Sweden and surrounding areas of the Baltoscandian Basin, including exceptionally preserved remains of Burgess Shale‐type metazoans and other organisms. Recovered SCFs include taxonomically resolvable ecdysozoan elements (priapulid and palaeoscolecid worms), lophotrochozoan elements (annelid chaetae and wiwaxiid sclerites), as well as ‘protoconodonts’, denticulate feeding structures, and a background of filamentous and spheroidal microbes. The annelids, wiwaxiids and priapulids are the first recorded from the Cambrian of Baltica. The File Haidar SCF assemblage is broadly comparable to those recovered from Cambrian basins in Laurentia and South China, though differences at lower taxonomic levels point to possible environmental or palaeogeographical controls on taxon ranges. These data reveal a fundamentally expanded picture of early Cambrian diversity on Baltica, and provide key insights into high‐latitude Cambrian faunas and patterns of SCF preservation. We establish three new taxa based on large populations of distinctive SCFs: Baltiscalida njorda gen. et sp. nov. (a priapulid), Baltichaeta jormunganda gen. et sp. nov. (an annelid) and Baltinema rana gen. et sp. nov. (a filamentous problematicum). 相似文献
11.
Yasuhiko Naito Daniel P. Costa Taiki Adachi Patrick W. Robinson Sarah H. Peterson Yoko Mitani Akinori Takahashi 《Ecology and evolution》2017,7(16):6259-6270
Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota‐poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal‐mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish (Icosteus aenigmaticus) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals. 相似文献
12.
E. D. Matys J. Sepúlveda S. Pantoja C. B. Lange M. Caniupán F. Lamy R. E. Summons 《Geobiology》2017,15(6):844-857
Marine oxygen minimum zones (OMZs) are characterized by the presence of subsurface suboxic or anoxic waters where diverse microbial processes are responsible for the removal of fixed nitrogen. OMZs have expanded over past decades and are expected to continue expanding in response to the changing climate. The implications for marine biogeochemistry, particularly nitrogen cycling, are uncertain. Cell membrane lipids (biomarkers), such as bacterial bacteriohopanepolyols (BHPs) and their degradation products (hopanoids), have distinctive structural attributes that convey information about their biological sources. Since the discovery of fossil hopanoids in ancient sediments, the study of BHPs has been of great biogeochemical interest due to their potential to serve as proxies for bacteria in the geological record. A stereoisomer of bacteriohopanetetrol (BHT), BHT II, has been previously identified in OMZ waters and has as been unequivocally identified in culture enrichments of anammox bacteria, a key group contributing to nitrogen loss in marine OMZs. We tested BHT II as a proxy for suboxia/anoxia and anammox bacteria in suspended organic matter across OMZ waters of the Humboldt Current System off northern Chile, as well as in surface and deeply buried sediments (125–150 ky). The BHT II ratio (BHT II/total BHT) increases as oxygen content decreases through the water column, consistent with previous results from Perú, the Cariaco Basin and the Arabian Sea, and in line with microbiological evidence indicating intense anammox activity in the Chilean OMZ. Notably, BHT II is transported from the water column to surface sediments, and preserved in deeply buried sediments, where the BHT II ratio correlates with changes in δ15N sediment values during glacial–interglacial transitions. This study suggests that BHT II offers a proxy for past changes in the relative importance of anammox, and fluctuations in nitrogen cycling in response to ocean redox changes through the geological record. 相似文献
13.
Elena Naimark Maria Kalinina Alexander Shokurov Natalia Boeva Alexander Markov Liubov Zaytseva 《Palaeontology》2016,59(4):583-595
Lagerstätten, places where soft‐bodied organisms became mineralized, provide a substantial bulk of palaeobiological information, but the detailed mechanisms of how soft‐tissue preservation takes place remain debatable. An experimental taphonomy approach, which allows for direct study of decay and mineralization, offers a means to study the preservational potential of different soft‐bodied organisms under controlled conditions. Here we compare the preservational capacity of two types of clay (kaolinite and montmorillonite) through a long‐term (24 month) experiment involving the burial and decay of small crustaceans. Our experimental design is innovative in that it models catastrophic sedimentation in fine‐grained colloidal suspension, which is believed to form Lagerstätten deposits. We demonstrated better preservation of buried organisms in clays compared to water, and in kaolinite compared to montmorillonite. As aluminium cations were present in high concentrations in kaolinite sediment but not in montmorillonite, the better preservation in kaolinite is attributed to the tanning properties of aluminium, which catalyses cross‐linking in proteins, protecting them from bacterial degradation. Anaerobic environments and acidification also slow down decay, but they are less effective than tanning. Kaolinite and montmorillonite replaced the crustacean integuments differently: in the remains buried in kaolinite, Al and Si were detected in equal proportions, while in those buried in montmorillonite, the Si content appeared to be much higher even in comparison with the initial sample of the clay. These variations probably arose from the different dynamics of acidic hydrolysis in the two clays associated with anaerobic decomposition of organic matter. Our results show that the preservation mechanism includes multi‐component interactions between the solution, mineral, sediment and organic remains; taken separately, any single component explains little. The specific conditions that occur within the colloidal clay sediments can facilitate conservation and start fast mineralization according to chemical properties and elemental content. 相似文献
14.
An unusually high hypolimnetic water column BOD (WCBOD), roughly 40 times higher than the sediment oxygen demand (SOD), was observed in a small eutrophic lake and an adjoining lagoon. The mean 5-day WCBOD during thermal stratification in the lake was 29 and 49 g/m2 at 10 and 20 °C, respectively, while in the lagoon it was even higher (47 and 87 g/m2 at 10 and 20 °C, respectively). The soluble fraction comprised about two-thirds of the WCBOD. WCBOD in the lake was much less during the unstratified period (5-day = 5 g/m2). The SOD rates at two depths in both the lake (0.31 and 0.2 g/m2-d) and lagoon (0.41 and 0.28 g/m2-d) were not unusually high. The ultimate whole BOD (UWCBOD + USOD) was approximately 96 g/m2 in the lake and 136 g/m2 in the lagoon and UWCBOD formed over 90% of the ultimate whole BOD in both water bodies. A possible cause for these abnormally high WCBODs, in addition to the normal autochthonous production, is an allochthonous source from loosely aggregated and flocculant mats of the bog moss, Sphagnum, which surrounds the lake-lagoon system. Storm water per se was clearly insignificant, but would have contributed indirectly through nutrients for autochthonous production. Such high short-term BOD rates may greatly over-estimate the demand to be satisfied by continuous aeration. 相似文献
15.
Jody J Wright Keith Mewis Niels W Hanson Kishori M Konwar Kendra R Maas Steven J Hallam 《The ISME journal》2014,8(2):455-468
Marine Group A (MGA) is a deeply branching and uncultivated phylum of bacteria. Although their functional roles remain elusive, MGA subgroups are particularly abundant and diverse in oxygen minimum zones and permanent or seasonally stratified anoxic basins, suggesting metabolic adaptation to oxygen-deficiency. Here, we expand a previous survey of MGA diversity in O2-deficient waters of the Northeast subarctic Pacific Ocean (NESAP) to include Saanich Inlet (SI), an anoxic fjord with seasonal O2 gradients and periodic sulfide accumulation. Phylogenetic analysis of small subunit ribosomal RNA (16S rRNA) gene clone libraries recovered five previously described MGA subgroups and defined three novel subgroups (SHBH1141, SHBH391, and SHAN400) in SI. To discern the functional properties of MGA residing along gradients of O2 in the NESAP and SI, we identified and sequenced to completion 14 fosmids harboring MGA-associated 16S RNA genes from a collection of 46 fosmid libraries sourced from NESAP and SI waters. Comparative analysis of these fosmids, in addition to four publicly available MGA-associated large-insert DNA fragments from Hawaii Ocean Time-series and Monterey Bay, revealed widespread genomic differentiation proximal to the ribosomal RNA operon that did not consistently reflect subgroup partitioning patterns observed in 16S rRNA gene clone libraries. Predicted protein-coding genes associated with adaptation to O2-deficiency and sulfur-based energy metabolism were detected on multiple fosmids, including polysulfide reductase (psrABC), implicated in dissimilatory polysulfide reduction to hydrogen sulfide and dissimilatory sulfur oxidation. These results posit a potential role for specific MGA subgroups in the marine sulfur cycle. 相似文献
16.
James O. Buckman 《Ichnos》2013,20(2):83-97
The new ichnogenus Parataenidium is erected for backfilled tubular trace fossils that can appear superficially similar to Taenidium, but are divided horizontally into two distinct levels. Two ichnospecies are recognised: Parataenidium mullaghmorensis isp. nov. and Parataenidium moniliformis (Tate 1859). The latter ichnospecies is transferred from Eione Tate 1859, which is a junior homonym of Eione Rafinesque 1814, and therefore unavailable for Tate's ichnotaxon. The ichnogenus is an important component of late Paleozoic shallow‐water siliciclastic sediments, and can be considered as a “guide”; indicator for the Carboniferous. 相似文献
17.
In the last 20 years, much taphonomic experimentation has focused on the interpretation of exceptionally preserved fossils. Decay experiments have been used to interpret the features preserved in soft‐bodied fossils and to determine the sequence of character loss and its impact on phylogenetic position. Experiments on the impact of microbial communities on decay and mineralization have started to illuminate the processes involved in the fossilization of soft tissues, including embryos. The role of decay in promoting authigenic mineralization has been used to investigate the formation of Ediacaran macrofossils and concretions. Maturation experiments have shown how the constituents of animals and plants are transformed over time to a macromolecular material that converges on a similar stable composition. Other maturation experiments have explained how structural colours in fossils are altered from the original. A major area requiring investigation is the role of specific types of microbes in decay and their impact on sediment and pore water chemistry, as well as the environmental controls that determine their presence and level of activity. Microbial activity has received less attention than other factors in attempts to explain why the occurrence and nature of exceptional preservation varies in time and space through the fossil record. 相似文献
18.
《Ecohydrology》2018,11(7)
Rivers originating in the granitic highlands of seasonally dry central Argentina provide water to 2 million people. These highlands comprise a complex landscape where a matrix of outcropping rock hosts vegetated patches that vary in response to long‐term grazing and fire. We characterized water storage dynamics across 20 sites representing 6 vegetation‐soil conditions with similar mid‐upslope positions in the landscape. We measured temporal and spatial variability of water inputs (rain and fog) and water stored at the unsaturated and saturated zones. We found that rainfall was highly seasonal, but fog occurred year‐round, likely representing an extra water source in areas with complex vegetation structure. Moreover, fog seems to regulate evapotranspiration/topsoil water dynamics. Water was stored in the saturated zone only during the rainy season. Piezometric response to rainfall was rapid but transient (dropping an average 15 cm/day), possibly buffering peak stormflows, reducing sediment yield, and delivering subsurface water downslope for potential storing throughout the year. Spatially, a reduction in soil depth (from 100 up to 9 cm) and vegetation structure (from woodlands to stonelands), with a degradation of topsoil conditions for infiltration were accompanied by a decline in water storage at the unsaturated (from 32% up to 14%) and saturated (from 46.3 up to 0 cm) zones. Taken together, our results support the infiltration trade‐off hypothesis, which states that vegetation structure benefits fog interception, soil properties that enhance water infiltration, subsurface flow paths, and storage. Long‐term disturbances have likely triggered a degradation of the hydrological function of seasonal highlands in central Argentina. 相似文献
19.
The objective of this study was to investigate the efficiency of multifunctional poly(ethylene glycol)-based hemoglobin conjugates crosslinked with antioxidant enzymes for their ability to protect an oxygen carrier (hemoglobin) and insulin secreting islets from the combination of hypoxic and free radical stress under simulated transplantation conditions. In this study, RINm5F cells and isolated pancreatic islets were challenged with oxidants (H(2)O(2) or xanthine and xanthine oxidase) and incubated with conjugates (hemoglobin-hemoglobin or superoxide dismutase-catalase-hemoglobin) in normoxia (21% oxygen) or hypoxia (6% or 1% oxygen). Hemoglobin protection, intracellular free radical activity and cell viability in RINm5F cells measured by methemoglobin, dichlorofluorescein-diacetate, and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, respectively, showed that cells were better protected by conjugates containing antioxidant enzymes. Insulin secretion from islets and qualitative confocal evaluation of viability showed beta cells were protected by conjugates containing antioxidant enzymes when exposed to induced stress. Our study suggested that antioxidant enzymes play a significant role in hemoglobin protection and thus extended cell protection. 相似文献
20.
This paper presents a new application for monolithic columns with low‐pressure chromatographic separation using an flow injection analysis configuration with chemiluminescent detection for the determination of a mixture of phenolic compounds: phloroglucinol, 2,4‐dihydroxybenzoic acid, salicylic acid, methyl paraben and n‐propyl gallate. The procedure consists of the separation of these compounds on a reverse‐phase ultra‐short monolithic column with pH 3.0 acetate buffer and 5% acetonitrile as carrier phase. The detection is based on a chemiluminescence measurement coming from Ce(IV)–Rhodamine 6G chemistry with the incorporation of two different chemiluminescent chemical conditions in the chromatographic setup in order to enhance the sensitivity for the different phenolic compounds. All separation and detection variables were optimized to propose a determination method. The analysis is performed in 280?s, with the sampling frequency being some 13 h?1. The calibration function is a double reciprocal function obtaining good results within two orders of magnitude. The limits of detection were 8.8 × 10 ?8 m (phloroglucinol), 2.7 × 10 ?8 m (2,4‐dihydroxybenzoic acid); 2.3 × 10 ?8 m (salicylic acid); 5.2 × 10 ?8 m (methyl paraben) and 4.1 × 10 ?6 m (n‐propyl gallate), and the relative standard deviations at a medium level of the linear range were 4.4% (phloroglucinol), 2.8% (2,4‐dihydroxybenzoic acid), 5.2% (salicylic acid), 3.6% (methyl paraben) and 6.8% (n‐propyl gallate). The method was applied and validated satisfactorily for the determination of these compounds in healthcare products, comparing the results against an HPLC reference method. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献