首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preeclampsia (PE), a pregnancy‐specific disorder, is a leading cause of perinatal maternal‐fetal mortality and morbidity. Impaired cell migration and invasion of trophoblastic cells and an imbalanced systemic maternal inflammatory response have been proposed as potential mechanisms of PE pathogenesis. Comparative analysis between PE placentas and normal placentas profiled differentially expressed miRNAs, lncRNAs, and mRNAs, including miR‐19a‐3p (miRNA), PSG10P (lncRNA), and IL1RAP (mRNA). This study was conducted to investigate their potential roles in PE pathogenesis. The expression of miR‐19a‐3p, PSG10P, and IL1RAP was examined in PE and normal placentas using RT‐qPCR. An in vitro experiment was performed in human trophoblast HET8/SVneo and TEV‐1 cells cultured in normoxic and hypoxic conditions. MiR‐19a‐3p targets were identified using Targetscan, miRanda, and PicTar analysis as well as luciferase reporter assays. The mouse model of PE was conducted using sFlt‐1 for in vivo tests. Lower levels of miR‐19a‐3p, but higher levels of PSG10P and IL1RAP were observed in PE placentas and the trophoblast cells in hypoxia. Luciferase reporter assays confirmed that PSG10P and IL1RAP were both direct targets of miR‐19a‐3p. Exposure to hypoxia inhibited cell viability, migration, and invasion of HET8/SVneo and TEV‐1 cells. Knocking out PSG10P and IL1RAP or overexpressing miR‐19a‐3p rescued the inhibition caused by hypoxia. In vivo experiments showed that IL1RAP promoted the expression of caspase‐3, a key apoptosis enzyme, but inhibited MMP9, which is responsible for degrading the extracellular matrix, suggesting a significant role of IL1RAP in cell proliferation, migration, and invasion. miR‐19a‐3p, PSG10P, and IL1RAP were all found to be involved in PE pathogenesis. With a common targeting region in their sequences, a regulatory network in the PSG10P/miR‐19a‐3p/IL1RAP pathway may contribute to PE pathogenesis during pregnancy.  相似文献   

2.
miR-15 (microRNA 15) and miR-16 are frequently deleted or down-regulated in many cancer cell lines and various tumour tissues, suggesting that miR-15a/16-1 plays important roles in tumour progression and might be a method for cancer treatment. We have developed a vector-based plasmid to explore the anti-tumour efficacy of miR-15a/16-1 in colon cancer in vivo. It is proposed that miR-15a and miR-16-1 target cyclin B1 (CCNB1), which associates with several tumorigenic features such as survival and proliferation. The levels of miR-15a and miR-16-1 in colon cancer cells were inversely correlated with CCNB1 expression, and there was consensus between miR-15a/16-1 and CCNB1 mRNA sequences by analysing homology. Vector-based miR-15a/16-1 expression plasmid was constructed and transfected into HCT 116 and SW620 colon cancer cells in vitro. The effects produced on cell viability and angiogenesis were analysed using flow cytometric analysis, colony formation analysis and tube formation analysis. CCNB1 expression down-regulation was checked by Western blotting. Systemic delivery of miR-15a/16-1 plasmids encapsulated in cationic liposome led to a significant inhibition of subcutaneous tumour growth and angiogenesis in tumour tissues, whereas no effects were observed with liposome carrying the non-specific plasmid. In summary, miR-15a/16-1 has been applied in colon cancer treatment in vivo, and resulted in effective colon tumour xenografts growth arrest and angiogenesis decrease. These findings suggest that systemic delivery of vector-based miR-15a/16-1 expression plasmid can be an approach to colon cancer therapy.  相似文献   

3.
To avoid high systemic doses, strategies involving antigen‐specific delivery of cytokine via linked antibodies or antibody fragments have been used. Targeting cancer‐associated peptides presented by major histocompatibility complex (MHC) molecules (pepMHC) increases the number of potential target antigens and takes advantage of cross‐presentation on tumor stroma and in draining lymph nodes. Here, we use a soluble, high‐affinity single‐chain T cell receptor Vα‐Vβ (scTv), to deliver cytokines to intracellular tumor‐associated antigens presented as pepMHC. As typical wild‐type T cell receptors (TCRs) exhibit low affinity (Kd = 1–100 μM or more), we used an engineered TCR, m33, that binds its antigenic peptide SIYRYYGL (SIY) bound to the murine class I major histocompatability complex protein H2‐Kb (SIY/Kb) with nanomolar affinity (Kd = 30 nM). We generated constructs consisting of m33 scTv fused to murine interleukin 2 (IL‐2), interleukin 15 (IL‐15), or IL‐15/IL‐15Rα (IL‐15 linked to IL‐15Rα sushi domain, called “superfusion”). The fusions were purified with good yields and bound specifically to SIY/Kb with high affinity. Proper cytokine folding and binding were confirmed, and the fusions were capable of stimulating proliferation of cytokine‐dependent cells, both when added directly and when presented in trans, bound to cells with the target pepMHC. The m33 superfusion was particularly potent and stable and represents a promising design for targeted antitumor immunomodulation. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

4.
Interleukin‐10 (IL‐10) displays well‐documented anti‐inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL‐10 negatively regulates microRNA‐7025‐5p (miR‐7025‐5p), the down‐regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin‐like growth factor 1 receptor (IGF1R) is a miR‐7025‐5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre‐injection of IL‐10 leads to increased bone formation, while agomiR‐7025‐5p injection delays fracture healing. Taken together, these results indicate that IL‐10 induces osteoblast differentiation via regulation of the miR‐7025‐5p/IGF1R axis. IL‐10 therefore represents a promising therapeutic strategy to promote fracture healing.  相似文献   

5.
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)‐17‐induced inflammatory injury in ATDC5 cells. CCK‐8 and migration assays were used to detect the functions of IL‐7, BIL, and microRNA (miR)‐125a on cell viability and migration. The miR‐125a level was changed by transfection, and tested by real‐time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL‐6 and tumor necrosis factor‐α), matrix metalloproteinases (MMPs), and pathway‐related proteins. Moreover, the enzyme‐linked immunosorbent assay also was used to detect inflammatory factor levels. IL‐7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL‐17‐induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR‐125a, and the miR‐125a mimic could partly reverse the effects of BIL on IL‐17‐injury. Finally, we showed that BIL inhibited the c‐Jun N‐terminal kinase (JNK) and nuclear factor kappa B (NF‐κB) pathways, and the miR‐125a mimic had the opposite effect. BIL inhibited IL‐17‐induced inflammatory injury in ATDC5 cells by downregulation of miR‐125a via JNK and NF‐κB signaling pathways.  相似文献   

6.
MiR‐16 is a tumour suppressor that is down‐regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR‐16 on macrophage polarization and subsequent T‐cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon‐γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)‐4. The identity of polarized macrophages was determined by profiling cell‐surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus‐expressing miR‐16 to assess the effects of miR‐16. Effects on macrophage–T cell interactions were analysed by co‐culturing purified CD4+ T cells with miR‐16‐expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR‐16 targets and understand its underlying mechanisms. MiR‐16‐induced M1 differentiation of mouse peritoneal macrophages from either the basal M0‐ or M2‐polarized state is indicated by the significant up‐regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin‐1, and increased secretion of M1 cytokine IL‐12 and nitric oxide. Consistently, miR‐16‐expressing macrophages stimulate the activation of purified CD4+ T cells. Mechanistically, miR‐16 significantly down‐regulates the expression of PD‐L1, a critical immune suppressor that controls macrophage–T cell interaction and T‐cell activation. MiR‐16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4+ T cells. This effect is potentially mediated through the down‐regulation of immune suppressor PD‐L1.  相似文献   

7.
This study aims to evaluate the potential involvement and regulatory mechanism of miR‐19a in hepatocytes autophagy of acute liver failure (ALF). The in vitro hepatocytes injury model of primary hepatocyte and hepatocytes line HL‐7702 was established by D‐galactosamine (D‐GalN) and lipopolysaccharide (LPS) co‐treatment. Relative expression level of miR‐19a and NBR2 was determined by qRT‐PCR. Protein expression of AMPK/PPARα and autophagy‐related gene was determined by Western blot. In hepatic tissue of 20 ALF patients and D‐GalN/LPS‐stimulated hepatocytes, miR‐19a was upregulated and NBR2 was downregulated. D‐GalN/LPS stimulation caused the inactivation of AMPK/PPARα signaling and the decrease of autophagy‐related LC3‐II/LC3‐I ratio and beclin‐1 expression in hepatocytes. The expression of both AMPK/PPARα and NBR2 were negatively controlled by miR‐19a overexpression or knockdown. Moreover, both NBR2 and PPARα were targeted regulated by miR‐19a according to luciferase reporter assay. In D‐GalN/LPS‐stimulated hepatocytes, AMPK activation promoted PPARα expression. AMPK inactivation inhibited the pro‐autophagy effect of miR‐19a and caused the decrease of LC3‐II/LC3‐I ratio and beclin‐1 expression. PPARα activation abrogated the anti‐autophagy effect of miR‐19a mimic and caused the increase of LC3‐II/LC3‐I ratio and beclin‐1 expression. NBR2 knockdown reversed the anti‐autophagy impact of miR‐19a inhibitor and caused the decrease of LC3‐II/LC3‐I ratio and beclin‐1 expression. In summary, our data suggested that miR‐19a negatively controlled the autophagy of hepatocytes attenuated in D‐GalN/LPS‐stimulated hepatocytes via regulating NBR2 and AMPK/PPARα signaling. J. Cell. Biochem. 119: 358–365, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
11.
Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)‐10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL‐10 production and pre‐treatment with recombinant IL‐10 (rIL‐10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL‐10 receptors (IL‐10Rs) and IL‐10 signalling proteins (IL‐10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL‐10. FATIICs were isolated on embryonic day 19 and exposed to 65%‐oxygen for 24 hrs. Cells in room air were used as controls. IL‐10Rs protein and mRNA were analysed by ELISA and qRT‐PCR, respectively. IL‐10SPs were assessed by Western blot using phospho‐specific antibodies. IL‐10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL‐8 (shown previously to be increased) and the role of IL‐10Rs, IL‐10SPs were reanalysed in IL‐8‐added normoxic cells and in the IL‐10Rs’ siRNA‐treated hyperoxic cells. The IL‐10Rs’ siRNA‐treated hyperoxic cells and IL‐8‐added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre‐treatment with rIL‐10 prior to hyperoxia exposure increased phosphorylated IL‐10SPs, compared to the rIL‐10‐untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL‐8 may play a role, and rIL‐10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia.  相似文献   

12.
13.
Recently, emerging evidence strongly suggested that the activation of interleukin‐27 Receptor α (IL‐27Rα) could modulate different inflammatory diseases. However, whether IL‐27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL‐27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL‐27Rα/IL‐27 expression was detected, and IL‐27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL‐27 (rIL‐27) stimulation. Finally, IFN‐γ/ IL‐10 in graft/serum from model mice was detected. Results showed higher IL‐27Rα/IL‐27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL‐27Rα+ spleen cells accelerated allograft rejection in vivo. rIL‐27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL‐27 could be almost totally blocked by JAK/ STAT inhibitor and anti‐IL‐27 p28 Ab. Finally, higher IL‐27Rα+IFN‐γ+ cells and lower IL‐27Rα+IL‐10+ cells within allografts, and high IFN‐γ/low IL‐10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL‐27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up‐regulating IFN‐γ via enhancing STAT pathway. Blocking IL‐27 pathway may favour to prevent allorejection, and IL‐27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.  相似文献   

14.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   

15.
Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as IL‐1β and IL‐8, has been noted in prostate cancer patients and IL‐8 has been shown to promote prostate cancer cell proliferation and migration; however, it is not clear whether IL‐1β regulates IL‐8 expression in prostate cancer cells. Glucosamine is widely regarded as an anti‐inflammatory agent and thus we hypothesized that if IL‐1β activated IL‐8 production in prostate cancer cells, then glucosamine ought to blunt such an effect. Three prostate cancer cell lines, DU‐145, PC‐3, and LNCaP, were used to evaluate the effects of IL‐1β and glucosamine on IL‐8 expression using ELISA and RT‐PCR analyses. IL‐1β elevated IL‐8 mRNA expression and subsequent IL‐8 secretion. Glucosamine significantly inhibited IL‐1β‐induced IL‐8 secretion. IL‐8 appeared to induce LNCaP cell proliferation by MTT assay; involvement of IL‐8 in IL‐1β‐dependent PC‐3 cell migration was demonstrated by wound‐healing and transwell migration assays. Inhibitors of MAPKs and NFκB were used to pinpoint MAPKs but not NFκB being involved in IL‐1β‐mediated IL‐8 production. IL‐1β‐provoked phosphorylation of all MAPKs was notably suppressed by glucosamine. We suggest that IL‐1β can activate the MAPK pathways resulting in an induction of IL‐8 production, which promotes prostate cancer cell proliferation and migration. In this context, glucosamine appears to inhibit IL‐1β‐mediated activation of MAPKs and therefore reduces IL‐8 production; this, in turn, attenuates cell proliferation/migration. J. Cell. Biochem. 108: 489–498, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The purpose of this study was to investigate the biological effect of miR‐16 on myocarditis and the underlying molecular mechanism. H9c2 cells were treated with 10 µg/mL lipopolysaccharide (LPS) for 12 hours to form a myocarditis injury model. We observed that LPS treatment distinctly decreased the level of miR‐16 in H9c2 cells. Upregulation of miR‐16 increased cell proliferation and reduced cell apoptosis. Then, CD40 was predicted and verified as a target gene of miR‐16 by TargetScan and luciferase reporter assay, respectively. Furthermore, the messenger RNA and protein expression of CD40 are negatively regulated by miR‐16. The relative expression of inflammatory factors was dramatically decreased by the miR‐16 mimic. Cells cotransfected with miR‐16 mimic and si‐CD40 could significantly abolish the injury of cardiomyocytes caused by myocarditis. Our study illustrated that the upregulation of miR‐16 has a protective effect on LPS‐damaged H9c2 cells, which may be achieved by regulating CD40 and the nuclear factor kappa B pathway.  相似文献   

17.
18.
Vein endothelial cells (VECs) constitute an important barrier for macromolecules and circulating cells from the blood to the tissues, stabilizing the colloid osmotic pressure of the blood, regulating the vascular tone, and rapidly changing the intercellular connection, and maintaining normal physiological function. Tight junction has been discovered as an important structural basis of intercellular connection and may play a key role in intercellular connection injuries or vascular diseases and selenium (Se) deficiency symptoms. Hence, we replicated the Se‐deficient broilers model and detected the specific microRNA in response to Se‐deficient vein by using quantitative real time‐PCR (qRT‐PCR) analysis. Also, we selected miR‐128‐1‐5p based on differential expression in vein tissue and confirmed its target gene cell adhesion molecule 1 (CADM1) by the dual luciferase reporter assay and qRT‐PCR in VECs. We made the ectopic miR‐128‐1‐5p expression for the purpose of validating its function on tight junction. The result showed that miR‐128‐1‐5p and CADM1 were involved in the ZO‐1‐mediated tight junction, increased paracellular permeability, and arrested cell cycle. We presumed that miR‐128‐1‐5p and Se deficiency might trigger tight junction. Interestingly, miR‐128‐1‐5p inhibitor and fasudil in part hinder the destruction of the intercellular structure caused by Se deficiency. The miR‐128‐1‐5p/CADM1/tight junction axis provides a new avenue toward understanding the mechanism of Se deficiency, revealing a novel regulation model of tight junction injury in vascular diseases.  相似文献   

19.
Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid‐dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid‐presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)?CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T‐cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL‐22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d‐mediated immunity, which can modulate tissue homeostasis and inflammatory responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号