首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human retinal pigment epithelium-specific 65-kDa protein (hRPE65) plays a crucial role within the retinoid visual cycle and several mutations affecting either its expression level or its enzymatic function are associated with inherited retinal diseases such as Retinitis Pigmentosa. The gene therapy product voretigene neparvovec (Luxturna) has been recently approved for treating hereditary retinal dystrophies; however, the treatment is currently accessible only to patients presenting confirmed biallelic mutations that severely impair hRPE65 function, and many reported hRPE65 missense mutations lack sufficient evidences for proving their pathogenicity. In this context, we developed a computational approach aimed at evaluating the potential pathogenic effect of hRPE65 missense variants located on the dimerisation domain of the protein. The protocol evaluates how mutations may affect folding and conformation stability of this protein region, potentially helping clinicians to evaluate the eligibility for gene therapy of patients diagnosed with this type of hRPE65 variant of uncertain significance.  相似文献   

3.
Morra G  Colombo G 《Proteins》2008,72(2):660-672
Most proteins must fold to a well-defined structure with a minimal stability to perform their function. Here we use a simple, molecular dynamics-based, energy decomposition approach to map the principal energetic interactions in a set of proteins representative of different folds. This work involves the all-atom simulation and analysis of the native structures and mutants of five different proteins representative of an all-alpha (yACPB, Protein A), all-beta (SH3), and a mixed alpha/beta fold (Proteins G and L). Given a certain structure, a native sequence and a set of mutants, we show that our model discriminates the ability of a mutation to yield a more or less stable protein, in agreement with experimental data, catching the principal energetic determinants of protein stabilization. Our approach identifies the interaction determinants responsible to define a fold and shows that mutations can either modulate the strength of pair-wise coupling between residues important for folding, or modify the profile of the principal interactions. Furthermore, we address the question of how to evaluate the fitness of a sequence to a given structure by comparing the information contained in the energy map, which recapitulates the chemistry of the sequence, to that contained in the contact map, which recapitulates the fold topology. The results show that the better fit between the energetic properties of the sequence and the fold topology corresponds to a higher stabilization of the protein. We discuss the relevance of these observations to the analysis of protein designability and to the rational evolution of new sequences.  相似文献   

4.
5.
The murine monoclonal antibody LA‐2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi , the causative agent of Lyme disease in North America. Human antibody equivalence to LA‐2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA‐2 protective epitope is important for developing OspA‐based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure‐based analysis of the LA‐2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA‐2 on the basis of computational predictions on the crystal structure of the complex and experimentally tested for in vitro binding and borreliacidal activity. We find that Y32 and H49 on the LA‐2 light chain, N52 on the LA‐2 heavy chain and residues A208, N228 and N251 on OspA were the key constituents of OspA/LA‐2 interface. These results reveal specific residues that may be exploited to modulate recognition of the protective epitope of OspA and have implications for developing prophylactic passive antibodies.  相似文献   

6.
Cassette mutagenesis was used to produce a library of mutations at the interface of the N- and C-terminal helices of Saccharomyces cerevisiae iso-1-cytochrome c. The library is random and comprises >98% mutations. Over 11,000 candidates were assayed for function by selecting for the ability of yeast, with the mutated gene as their sole cytochrome c source, to grow on nonfermentable carbon sources. We estimate that ≈0.5% of the 160,000 total amino acid combinations at these four residues result in a functional cytochrome c. Significant correlations are found between the phenotype of yeast harboring the alleles and both the Dayhoff mutation matrix and transfer free energies (cyclohexane-to-water and n-octanol-to-water). Similar correlations are observed with respect to growth rate. Finally, sequences that are consistent with function follow a binary amino acid pattern. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The reversible phosphorylation of proteins regulates many biological processes. Despite the technological advances in the enrichment and detection of phosphorylated proteins, the currently available techniques still struggle with the complexity of the human proteome. The aim of this review is to highlight the molecular recognition elements of the interaction between phosphorylated proteins and peptides and pTyr or pSer/Thr-binding domains. The identification of the recognition features of the naturally occurring pTyr- and pSer/Thr-binding domains can contribute to an understanding of the molecular aspects of the affinity and specificity for phosphorylated residues. This might inspire the design of small "biomimetic" molecules with potential applications in assessing the extent of the phosphoproteome using affinity-based strategies.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence‐based and structure‐based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure‐based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X‐ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease‐associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e‐5). When adding this information to sequence‐based features such as the difference between wildtype and mutant position‐specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence‐based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease‐associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Evaluation of Surface Complementarity, Hydrogen bonding, and Electrostatic interaction in molecular Recognition (ESCHER) is a new docking procedure consisting of three modules that work in series. The first module evaluates the geometric complementarity and produces a set of rough solutions for the docking problem. The second module identifies molecular collisions within those solutions, and the third evaluates their electrostatic complementarity. We describe the algorithm and its application to the docking of cocrystallized protein domains and unbound components of protein-protein complexes. Furthermore, ESCHER has been applied to the reassociation of secondary and supersecondary structure elements. The possibility of applying a docking method to the problem of protein structure prediction is discussed. Proteins 28:556–567, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Proteins are subjected to electric fields both within the cell and during routine biochemical analysis. We have used atomistic molecular dynamics simulations to study conformational changes within three structurally diverse proteins subjected to high electric fields. At electric fields in excess of .5?V/nm, major structural changes were observed in all three proteins due to charge redistribution within the biomolecule. However, the electromechanical resilience was found to be highly dependent on the protein secondary structure, with α-helices showing a particularly high susceptibility to deformation by the applied electric field.  相似文献   

11.
Computer simulations using the simplified energy function and simulated tempering dynamics have accurately determined the native structure of the pYVPML, SVLpYTAVQPNE, and SPGEpYVNIEF peptides in the complexes with SH2 domains. Structural and equilibrium aspects of the peptide binding with SH2 domains have been studied by generating temperature-dependent binding free energy landscapes. Once some native peptide-SH2 domain contacts are constrained, the underlying binding free energy profile has the funnel-like shape that leads to a rapid and consistent acquisition of the native structure. The dominant native topology of the peptide-SH2 domain complexes represents an extended peptide conformation with strong specific interactions in the phosphotyrosine pocket and hydrophobic interactions of the peptide residues C-terminal to the pTyr group. The topological features of the peptide-protein interface are primarily determined by the thermodynamically stable phosphotyrosyl group. A diversity of structurally different binding orientations has been observed for the amino-terminal residues to the phosphotyrosine. The dominant native topology for the peptide residues carboxy-terminal to the phosphotyrosine is tolerant to flexibility in this region of the peptide-SH2 domain interface observed in equilibrium simulations. The energy landscape analysis has revealed a broad, entropically favorable topology of the native binding mode for the bound peptides, which is robust to structural perturbations. This could provide an additional positive mechanism underlying tolerance of the SH2 domains to hydrophobic conservative substitutions in the peptide specificity region.  相似文献   

12.
TYK2 is a nonreceptor tyrosine kinase, member of the Janus kinases (JAK), with a central role in several diseases, including cancer. The JAKs' catalytic domains (KD) are highly conserved, yet the isolated TYK2-KD exhibits unique specificities. In a previous work, using molecular dynamics (MD) simulations of a catalytically impaired TYK2-KD variant (P1104A) we found that this amino acid change of its JAK-characteristic insert (αFG), acts at the dynamics level. Given that structural dynamics is key to the allosteric activation of protein kinases, in this study we applied a long-scale MD simulation and investigated an active TYK2-KD form in the presence of adenosine 5′-triphosphate and one magnesium ion that represents a dynamic and crucial step of the catalytic cycle, in other protein kinases. Community analysis of the MD trajectory shed light, for the first time, on the dynamic profile and dynamics-driven allosteric communications within the TYK2-KD during activation and revealed that αFG and amino acids P1104, P1105, and I1112 in particular, hold a pivotal role and act synergistically with a dynamically coupled communication network of amino acids serving intra-KD signaling for allosteric regulation of TYK2 activity. Corroborating our findings, most of the identified amino acids are associated with cancer-related missense/splice-site mutations of the Tyk2 gene. We propose that the conformational dynamics at this step of the catalytic cycle, coordinated by αFG, underlie TYK2-unique substrate recognition and account for its distinct specificity. In total, this work adds to knowledge towards an in-depth understanding of TYK2 activation and may be valuable towards a rational design of allosteric TYK2-specific inhibitors.  相似文献   

13.
Ran Friedman 《Proteins》2017,85(11):2143-2152
Fms‐like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is a drug target for leukemias. Several potent inhibitors of FLT3 exist, and bind to the inactive form of the enzyme. Unfortunately, resistance due to mutations in the kinase domain of FLT3 limits the therapeutic effects of these inhibitors. As in many other cases, it is not straightforward to explain why certain mutations lead to drug resistance. Extensive fully atomistic molecular dynamics (MD) simulations of FLT3 were carried out with an inhibited form (FLT‐quizartinib complex), a free (apo) form, and an active conformation. In all cases, both the wild type (wt) proteins and two resistant mutants (D835F and Y842H) were studied. Analysis of the simulations revealed that impairment of protein‐drug interactions cannot explain the resistance mutations in question. Rather, it appears that the active state of the mutant forms is perturbed by the mutations. It is therefore likely that perturbation of deactivation of the protein (which is necessary for drug binding) is responsible for the reduced affinity of the drug to the mutants. Importantly, this study suggests that it is possible to explain the source of resistance by mutations in FLT3 by an analysis of unbiased MD simulations.  相似文献   

14.
Clinical molecular genetics has recently become recognized as a diagnostic discipline. This article covers the evolution, structure, and possible forward development of clinical molecular genetics. Topics covered include general test categories, introducing new tests, laboratory facilities, staffing and training, and overview of quality issues.  相似文献   

15.
16.
The most common presentation of animal leptospirosis is the subclinical and silent chronic form, that can lead to important reproductive disorders. The diagnosis of this chronic form remains a challenge. The aim of the present study is to gather and critically analyse the current information about molecular tools applied to animal leptospirosis diagnosis, particularly the silent chronic presentation of the infection. Regarding clinical specimens, samples from urinary tract were the most used (69/102, 67·7%), while few studies (12/102, 11·8%) investigated samples from reproductive tract. Concerning the molecular methods applied, the most used is still the conventional polymerase chain reaction (PCR) (46/102, 45%), followed by real-time PCR (38/102, 37·2%). The lipL32 gene is currently the most common target used for Leptospira detection, with 48% of studies applying this genetic marker. From all the studies, only few (21/102, 20·5%) performed gene sequencing. According to the majority of authors, current evidence suggests that lipL32-PCR is useful for an initial screening for Leptospira DNA detection in animal clinical samples. Posteriorly, if DNA sequencing could be performed on positive lipL32-PCR samples, we encourage the use of secY gene as a genetic marker. The molecular methods appear as the most important tools for the diagnosis of the chronic silent leptospirosis on domestic animals, reinforcing its evident impact not only on animal reproduction but also on a One Health context.  相似文献   

17.
Witham S  Takano K  Schwartz C  Alexov E 《Proteins》2011,79(8):2444-2454
Large-scale next generation resequencing of X chromosome genes identified a missense mutation in the CLIC2 gene on Xq28 in a male with X-linked intellectual disability (XLID) and not found in healthy individuals. At the same time, numerous nsSNPs (nonsynonomous SNP) have been reported in the CLIC2 gene in healthy individuals indicating that the CLIC2 protein can tolerate amino acid substitutions and be fully functional. To test the possibility that p.H101Q is a disease-causing mutation, we performed in silico simulations to calculate the effects of the p.H101Q mutation on CLIC2 stability, dynamics, and ionization states while comparing the effects obtained for presumably harmless nsSNPs. It was found that p.H101Q, in contrast with other nsSNPs, (a) lessens the flexibility of the joint loop which is important for the normal function of CLIC2, (b) makes the overall 3D structure of CLIC2 more stable and thus reduces the possibility of the large conformational change expected to occur when CLIC2 moves from a soluble to membrane form, and (c) removes the positively charged residue, H101, which may be important for the membrane association of CLIC2. The results of in silico modeling, in conjunction with the polymorphism analysis, suggest that p.H101Q may be a disease-causing mutation, the first one suggested in the CLIC family.  相似文献   

18.
Mankoo PK  Sukumar S  Karchin R 《Proteins》2009,75(2):499-508
Somatic mutations in PIK3CA (phosphatidylinositol-3 kinase, catalytic subunit, alpha isoform) are reported in breast and other human cancers to concentrate at hotspots within its kinase and helical domains. Most of these mutations cause kinase gain of function in vitro and are associated with oncogenicity in vivo. However, little is known about the mechanisms driving tumor development. We have performed computational structural studies on a homology model of wildtype PIK3CA plus recurrent H1047R, H1047L, and P539R mutations, located in the kinase and helical domains, respectively. The time evolution of the structures show that H1047R/L mutants exhibit a larger area of the catalytic cleft between the kinase N- and C-lobes compared with the wildtype that could facilitate the entrance of substrates. This larger area might yield enhanced substrate-to-product turnover associated with oncogenicity. In addition, the H1047R/L mutants display increased kinase activation loop mobility, compared with the wildtype. The P539R mutant forms more hydrogen bonds and salt-bridge interactions than the wildtype, properties that are associated with enhanced thermostability. Mutant-specific differences in the catalytic cleft and activation loop behavior suggest that structure-based mutant-specific inhibitors can be designed for PIK3CA-positive breast cancers.  相似文献   

19.
Mammalian evolution and biomedicine: new views from phylogeny   总被引:1,自引:1,他引:0  
Recent progress resolving the phylogenetic relationships of the major lineages of mammals has had a broad impact in evolutionary biology, comparative genomics and the biomedical sciences. Novel insights into the timing and historical biogeography of early mammalian diversification have resulted from a new molecular tree for placental mammals coupled with dating approaches that relax the assumption of the molecular clock. We highlight the numerous applications to come from a well-resolved phylogeny and genomic prospecting in multiple lineages of mammals, from identifying regulatory elements in mammalian genomes to assessing the functional consequences of mutations in human disease loci and those driving adaptive evolution.  相似文献   

20.
The conformational analysis of polynorbornene (PNB) chains was investigated with the AM1, MM2, AMBER and OPLS methods taking into consideration the possibility of binding of norbornene monomers to each other at various positions, i.e. exo–exo, exo–endo, endo–endo. The chain that is formed by connecting exo–endo positions of the monomers has lower torsional barrier energy than those formed with bonds at other positions and has more flexibility. It is determined that the thredisyndiotactic chain formed by exo–endo addition adopts a helix structure and has a coil shape. The disyndiotactic chain formed by connecting norbornene monomers in mixed type has a linear structure. It is found that the repeat unit conformations of thredisyndiotactic and disyndiotactic chains of PNB are TGTG and (TGTG)2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号