首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence of an atmospheric CO2 fertilization effect on radial growth rates was uncovered by examining climate–growth relationships for seven western juniper tree‐ring chronologies in central Oregon using multiple regression models. Consistent upward trends of the residuals from dendroclimatic models indicated a decreased ability for climate parameters to predict growth with time. Additionally, an assessment was made of whether enhanced growth was detectable under drought conditions, because a major benefit of elevated atmospheric CO2 is the reduction of water stress. Mean ring indices were compared between ecologically comparable drought years, when atmospheric CO2 was lower (1896–1949), and more recent drought years that occurred under higher atmospheric CO2 concentrations (1950–96/98). The results presented herein show that: (i) residuals from climate/growth models had a significant positive trend at six of seven sites, suggesting the presence of a nonclimatic factor causing increased growth during recent decades; (ii) overall growth was 23% greater in the latter half of the 20th century; (iii) growth indices during matched drought and matched wet years were 63% and 30% greater, respectively, in the later 20th century than the earlier 20th century; and (iv) harsher sites had greater responses during drought periods between early and late periods. While it is not possible to rule out other factors, these results are consistent with expectations for CO2 fertilization effects.  相似文献   

2.
The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate–vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2‐fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest‐stand level, but insights into species‐specific growth changes – that ultimately determine community‐level responses – are lacking. Here, we analyse species‐specific growth changes on a centennial scale, using growth data from tree‐ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size‐class isolation) growth‐trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8–10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large‐scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous predictions of carbon dynamics of tropical forest under climate change.  相似文献   

3.
Stem radial growth responds to environmental conditions, and has been widely used as a proxy to study long‐term patterns of tree growth and to assess the impact of environmental changes on growth patterns. In this study, we use a tree ring dataset from the Catalan Ecological and Forest Inventory to study the temporal variability of Scots pine (Pinus sylvestris L.) stem growth during the 20th century across a relatively large region (Catalonia, NE Spain) close to the southern limit of the distribution of the species. Basal area increment (BAI) was modelled as a function of tree size and environmental variables by means of mixed effects models. Our results showed an overall increase of 84% in Scots pine BAI during the 20th century, consistent with most previous studies for temperate forests. This trend was associated with increased atmospheric CO2 concentrations and, possibly, with a general increase in nutrient availability, and we interpreted it as a fertilization effect. Over the same time period, there was also a marked increase in temperature across the study region (0.19 °C per decade on average). This warming had a negative impact on radial growth, particularly at the drier sites, but its magnitude was not enough to counteract the fertilization effect. In fact, the substantial warming observed during the 20th century in the study area did not result in a clear pattern of increased summer drought stress because of the large variability in precipitation, which did not show any clear time trend. But the situation may change in the future if temperatures continue to rise and/or precipitation becomes scarcer. Such a change could potentially reverse the temporal trend in growth, particularly at the driest sites, and is suggested in our data by the relative constancy of radial growth after ca. 1975, coinciding with the warmer period. If this situation is representative of other relatively dry, temperate forests, the implications for the regional carbon balance would be substantial.  相似文献   

4.
We investigated the tree growth and physiological response of five pine forest stands in relation to changes in atmospheric CO2 concentration (ca) and climate in the Iberian Peninsula using annually resolved width and δ13C tree‐ring chronologies since ad 1600. 13C discrimination (Δ≈ci/ca), leaf intercellular CO2 concentration (ci) and intrinsic water‐use efficiency (iWUE) were inferred from δ13C values. The most pronounced changes were observed during the second half of the 20th century, and differed between stands. Three sites kept a constant ci/ca ratio, leading to significant ci and iWUE increases (active response to ca); whereas a significant increase in ci/ca resulted in the lowest iWUE increase of all stands at a relict Pinus uncinata forest site (passive response to ca). A significant decrease in ci/ca led to the greatest iWUE improvement at the northwestern site. We tested the climatic signal strength registered in the δ13C series after removing the low‐frequency trends due to the physiological responses to increasing ca. We found stronger correlations with temperature during the growing season, demonstrating that the physiological response to ca changes modulated δ13C and masked the climate signal. Since 1970 higher δ13C values revealed iWUE improvements at all the sites exceeding values expected by an active response to the ca increase alone. These patterns were related to upward trends in temperatures, indicating that other factors are reinforcing stomatal closure in these forests. Narrower rings during the second half of the 20th century than in previous centuries were observed at four sites and after 1970 at all sites, providing no evidence for a possible CO2‘fertilization’ effect on growth. The iWUE improvements found for all the forests, reflecting both a ca rise and warmer conditions, seem to be insufficient to compensate for the negative effects of the increasing water limitation on growth.  相似文献   

5.
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.  相似文献   

6.
The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree‐ring sites located across Europe are investigated to determine the intrinsic water‐use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX‐Bern 1.0) that integrates numerous ecosystem and land–atmosphere exchange processes in a theoretical framework. The spatial pattern of tree‐ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south‐to‐north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil‐water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.  相似文献   

7.
The ongoing climatic changes potentially affect plant growth and the functioning of temperature‐limited high‐altitude and high‐latitude ecosystems; the rate and magnitude of these biotic changes are, however, uncertain. The aim of this study was to reconstruct stand structure and growth forms of Larix sibirica (Ledeb.) in undisturbed forest–tundra ecotones of the remote Polar Urals on a centennial time scale. Comparisons of the current ecotone with historic photographs from the 1960s clearly document that forests have significantly expanded since then. Similarly, the analysis of forest age structure based on more than 300 trees sampled along three altitudinal gradients reaching from forests in the valleys to the tundra indicate that more than 70% of the currently upright‐growing trees are <80 years old. Because thousands of more than 500‐year‐old subfossil trees occur in the same area but tree remnants of the 15–19th century are lacking almost entirely, we conclude that the forest has been expanding upwards into the formerly tree‐free tundra during the last century by about 20–60 m in altitude. This upward shift of forests was accompanied by significant changes in tree growth forms: while 36% of the few trees that are more than 100 years old were multi‐stem tree clusters, 90% of the trees emerging after 1950 were single‐stemmed. Tree‐ring analysis of horizontal and vertical stems of multi‐stemmed larch trees showed that these trees had been growing in a creeping form since the 15th century. In the early 20th century, they started to grow upright with 5–20 stems per tree individual. The incipient vertical growth led to an abrupt tripling in radial growth and thus, in biomass production. Based on above‐ and belowground biomass measurements of 33 trees that were dug out and the mapping of tree height and diameter, we estimated that forest expansion led to a biomass increase by 40–75 t ha?1 and a carbon accumulation of approximately 20–40 g C m?2 yr?1 during the last century. The forest expansion and change in growth forms coincided with significant summer warming by 0.9 °C and a doubling of winter precipitation during the 20th century. In summary, our results indicate that the ongoing climatic changes are already leaving a fingerprint on the appearance, structure, and productivity of the treeline ecotone in the Polar Urals.  相似文献   

8.
High‐elevation forests are experiencing high rates of warming, in combination with CO2 rise and (sometimes) drying trends. In these montane systems, the effects of environmental changes on tree growth are also modified by elevation itself, thus complicating our ability to predict effects of future climate change. Tree‐ring analysis along an elevation gradient allows quantifying effects of gradual and annual environmental changes. Here, we study long‐term physiological (ratio of internal to ambient CO2, i.e., Ci/Ca and intrinsic water‐use efficiency, iWUE) and growth responses (tree‐ring width) of Himalayan fir (Abies spectabilis) trees in response to warming, drying, and CO2 rise. Our study was conducted along elevational gradients in a dry and a wet region in the central Himalaya. We combined dendrochronology and stable carbon isotopes (δ13C) to quantify long‐term trends in Ci/Ca ratio and iWUE (δ13C‐derived), growth (mixed‐effects models), and evaluate climate sensitivity (correlations). We found that iWUE increased over time at all elevations, with stronger increase in the dry region. Climate–growth relations showed growth‐limiting effects of spring moisture (dry region) and summer temperature (wet region), and negative effects of temperature (dry region). We found negative growth trends at lower elevations (dry and wet regions), suggesting that continental‐scale warming and regional drying reduced tree growth. This interpretation is supported by δ13C‐derived long‐term physiological responses, which are consistent with responses to reduced moisture and increased vapor pressure deficit. At high elevations (wet region), we found positive growth trends, suggesting that warming has favored tree growth in regions where temperature most strongly limits growth. At lower elevations (dry and wet regions), the positive effects of CO2 rise did not mitigate the negative effects of warming and drying on tree growth. Our results raise concerns on the productivity of Himalayan fir forests at low and middle (<3,300 m) elevations as climate change progresses.  相似文献   

9.
We examined radial growth responses of ponderosa pine (Pinus ponderosa var. ponderosa) between 1905–1954 and 1955–2004 to determine if the effects of increased intrinsic water‐use efficiencies (iWUE) caused by elevated atmospheric CO2 concentrations were age‐specific. We collected 209 cores from five sites in the Northern Rockies and calculated iWUE using carbon isotope data from 1850 to 2004. Standardized radial growth responses were age dependent, with older trees exhibiting significantly higher values than younger trees during the later period at four sites and all sites combined. No significant differences in radial growth existed either for the individual sites or combined site during the earlier period. Increases in iWUE during 1955–2004 were 11% greater than during 1905–1954, and pentadal fluctuations in iWUE were significantly correlated with the radial growth of older trees from 1850 to 2004. Radial growth of younger trees and iWUE were not significantly correlated. Our results suggest that: (1) responses to elevated atmospheric CO2 in old‐growth ponderosa forests are age‐specific; (2) radial growth increases in older trees coincided with increased iWUE; (3) ponderosa had increased growth rates in their third, fourth, and fifth centuries of life; and (4) age‐specific growth responses during 1955–2004 are unique since at least the mid‐16th century.  相似文献   

10.
Aim The goals of this study are: (1) to determine whether increasing atmospheric CO2 concentrations and changing climate increased intrinsic water use efficiency (iWUE, as detected by changes in Δ13C) over the last four decades; and if it did increase iWUE, whether it led to increased tree growth (as measured by tree‐ring growth); (2) to assess whether CO2 responses are biome dependent due to different environmental conditions, including availability of nutrients and water; and (3) to discuss how the findings of this study can better inform assumptions of CO2 fertilization and climate change effects in biospheric and climate models. Location A global range of sites covering all major forest biome types. Methods The analysis encompassed 47 study sites including boreal, wet temperate, mediterranean, semi‐arid and tropical biomes for which measurements of tree ring Δ13C and growth are available over multiple decades. Results The iWUE inferred from the Δ13C analyses of comparable mature trees increased 20.5% over the last 40 years with no significant differences between biomes. This increase in iWUE did not translate into a significant overall increase in tree growth. Half of the sites showed a positive trend in growth while the other half had a negative or no trend. There were no significant trends within biomes or among biomes. Main conclusions These results show that despite an increase in atmospheric CO2 concentrations of over 50 p.p.m. and a 20.5% increase in iWUE during the last 40 years, tree growth has not increased as expected, suggesting that other factors have overridden the potential growth benefits of a CO2‐rich world in many sites. Such factors could include climate change (particularly drought), nutrient limitation and/or physiological long‐term acclimation to elevated CO2. Hence, the rate of biomass carbon sequestration in tropical, arid, mediterranean, wet temperate and boreal ecosystems may not increase with increasing atmospheric CO2 concentrations as is often implied by biospheric models and short‐term elevated CO2 experiments.  相似文献   

11.
Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2, and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13‐year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan–Monroe State Forest (MMSF) in Indiana, and a regional 11‐year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water‐demanding ‘mesophytic’ tree species. Given the current replacement of water‐stress adapted ‘xerophytic’ tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr?1) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1–3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth‐enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.  相似文献   

12.
Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data‐based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree‐ring reconstructions of NPP and raw ring‐width series at six temperate forest sites. These model‐data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree‐ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm‐growing season temperatures, while tree‐ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2, but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in individual models.  相似文献   

13.
Rising atmospheric carbon dioxide [CO2] can accelerate tree growth by stimulating photosynthesis and increasing intrinsic water‐use efficiency (iWUE). Little evidence exists, however, for the long‐term growth and gas‐exchange responses of mature trees in tropical forests to the combined effects of rising [CO2] and other global changes such as warming. Using tree rings and stable isotopes of carbon and oxygen, we investigated long‐term trends in the iWUE and stem growth (basal area increment, BAI) of three canopy tree species in a tropical monsoon forest in western Thailand (Chukrasia tabularis, Melia azedarach, and Toona ciliata). To do this, we modelled the contribution of ontogenetic effects (tree diameter or age) and calendar year to variation in iWUE, oxygen isotopes, and BAI using mixed‐effects models. Although iWUE increased significantly with both tree diameter and calendar year in all species, BAI at a given tree diameter was lower in more recent years. For one species, C. tabularis, differences in crown dominance significantly influence stable isotopes and growth. Tree ring Δ18O increased with calendar year in all species, suggesting that increasing iWUE may have been driven by relatively greater reductions in stomatal conductance – leading to enrichment in Δ18O – than increases in photosynthetic capacity. Plausible explanations for the observed declines in growth include water stress resulting from rising temperatures and El Niño events, increased respiration, changes in allocation, or more likely, a combination of these factors.  相似文献   

14.
The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2) and temperature on high‐latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ13C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree‐ring record, which extends from 1912 through 1961 (50 years), targets early twentieth‐century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ13C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high‐latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth‐Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ13C in response to twentieth century pCO2 rise, a significant negative relationship (r = ?0.53, P < 0.0001) between the average, annual Δ13C values and regional annual temperature anomalies is observed, suggesting a strong control of temperature on the Δ13C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water‐use efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2. We conclude that annual tree‐ring records from northern high‐latitude forests record the effects of climate warming and pCO2 rise across the twentieth century.  相似文献   

15.
Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth.  相似文献   

16.
Growth–climate relationships were investigated in Greek firs from Ainos Mountain on the island of Cephalonia in western Greece, using dendrochronology. The goal was to test whether tree growth is sensitive to moisture stress, whether such sensitivity has been stable through time, and whether changes in growth–moisture relationships support an influence of atmospheric CO2 on growth. Regressions of tree‐ring indices (ad 1820–2007) with instrumental temperature, precipitation, and Palmer Drought Severity Index (PDSI) indicate that growth is fundamentally limited by growing‐season moisture in late spring/early summer, most critically during June. However, this simple picture obscures a pattern of sharply evolving growth–climate relationships during the 20th century. Correlations between growth and June temperature, precipitation, and PDSI were significantly greater in the early 20th century but later degraded and disappeared. By the late 20th–early 21st century, there remains no statistically significant relationship between moisture and growth implying markedly enhanced resistance to drought. Moreover, growth experienced a net increase over the last half‐century culminating with a sharp spike in ad 1988–1990. This recent growth acceleration is evident in the raw ring‐width data prior to standardization, ruling out artifacts from statistical detrending. The vanishing relationship with moisture and parallel enhancement of growth are all the more notable because they occurred against a climatic backdrop of increasing aridity. The results are most consistent with a significant CO2 fertilization effect operating through restricted stomatal conductance and improved water‐use efficiency. If this interpretation is correct, atmospheric CO2 is now overcompensating for growth declines anticipated from drier climate, suggesting its effect is unusually strong and likely to be detectable in other up‐to‐date tree‐ring chronologies from the Mediterranean.  相似文献   

17.
The rise in atmospheric CO2 concentrations (Ca) has been related to tree growth enhancement and increasing intrinsic water‐use efficiency (iWUE). However, the extent that rising Ca has led to increased long‐term iWUE and whether climate could explain deviations from expected Ca‐induced growth enhancement are still poorly understood. The aim of this research was to use Ca and local climatic variability to explain changes during the 20th century in growth and tree ring and needle δ13C in declining and nondeclining Abies alba stands from the Spanish Pyrenees, near the southern distribution limit of this species. The temporal trends of iWUE were calculated under three theoretical scenarios for the regulation of plant‐gas exchange at increasing Ca. We tested different linear mixed‐effects models by multimodel selection criteria to predict basal area increment (BAI), a proxy of tree radial growth, using these scenarios and local temperature together with precipitation data as predictors. The theoretical scenario assuming the strongest response to Ca explained 66–81% of the iWUE variance and 28–56% of the observed BAI variance, whereas local climatic variables together explained less than 11–21% of the BAI variance. Our results are consistent with a drought‐induced limitation of the tree growth response to rising CO2 and a decreasing rate of iWUE improvement from the 1980s onward in declining A. alba stands subjected to lower water availability.  相似文献   

18.
Climate increases regional tree-growth variability in Iberian pine forests   总被引:3,自引:0,他引:3  
Tree populations located at the geographical distribution limit of the species may provide valuable information about tree‐growth response to changes on climatic conditions. We established nine Pinus nigra, 12 P. sylvestris and 17 P. uncinata tree‐ring width chronologies along the eastern and northern Iberian Peninsula, where these species are found at the edge of their natural range. Tree‐growth variability was analyzed using principal component analysis (PCA) for the period 1885–1992. Despite the diversity of species, habitats and climatic regimes, a common macroclimatic signal expressed by the first principal component (PC1) was found. Moreover, considering the PC1 scores as a regional chronology, significant relations were established with Spanish meteorological data. The shared variance held by the tree chronologies, the frequency of narrow rings and the interannual growth variability (sensitivity) increased markedly during the studied period. This shows an enhancement of growth synchrony among forests indicating that climate might have become more limiting to growth. Noticeably, an upward abrupt shift in common variability at the end of the first half of the 20th century was detected. On the other hand, moving‐interval response functions showed a change in the growth–climate relationships during the same period. The relationship between growth and late summer/autumn temperatures of the year before growth (August–September, negative correlation, and November, positive correlation) became stronger. Hence, water stress increase during late summer previous to tree growth could be linked to the larger growth synchrony among sites, suggesting that climate was driving the growth pattern changes. This agrees with the upward trend in temperature observed in these months. Moreover, the higher occurrence of extreme years and the sensitivity increase in the second half of the 20th century were in agreement with an increment in precipitation variability during the growing period. Precipitation variability was positively related to tree‐growth variability, but negatively to radial growth. In conclusion, a change in tree‐growth pattern and in the climatic response of the studied forests was detected since the mid‐20th century and linked to an increase in water stress. These temporal trends were in agreement with the observed increase in warmer conditions and in precipitation variability.  相似文献   

19.
Aim The species‐specific response of tree‐line species to climatic forcing is a crucial topic in modelling climate‐driven ecosystem dynamics. In northern Québec, Canada, black spruce (Picea mariana) is the dominant species at the tree line, but white spruce (Picea glauca) also occurs along the maritime coast of Hudson Bay, and is expanding along the coast and on lands that have recently emerged because of isostatic uplift. Here we outline the present distribution, structure, dynamics and recent spread of white spruce from the tree line up to its northernmost position in the shrub tundra along the Hudson Bay coast. We aimed to obtain a minimum date of the arrival of the species in the area and to evaluate its dynamics relative to recent climate changes. Location White spruce populations and individuals were sampled along a latitudinal transect from the tree line to the northernmost individual in the shrub tundra along the Hudson Bay coast and in the Nastapoka archipelago in northern Québec and Nunavut, Canada (56°06′–56°32′ N). Methods White spruce populations were mapped, and the position, dimension, growth form and origin (seed or layering) of every individual recorded. Tree‐ring analyses of living and dead trees allowed an estimation of the population structure, past recruitment, growth trends and growth rate of the species. A macrofossil analysis was performed of the organic horizon of the northernmost white spruce stands and individuals. Radiocarbon dates of white spruce remains and organic matter were obtained. The rate of isostatic uplift was assessed by radiocarbon dating of drifted wood fragments. Results The first recorded establishment of white spruce was almost synchronous at all sites and occurred around ad 1660. Spruce recruitment was rather continuous at the tree line, while it showed a gap in the northern shrub tundra during the first decades of the 19th century. A vigorous, recent establishment of seedlings was observed in the shrub tundra; only wind‐exposed, low krummholz (stunted individuals) did not show any sexual regeneration. A period of suppressed growth occurred from the 1810s to the 1850s in most sites. A growth increase was evident from the second half of the 19th century and peaked in the 1880s and the 20th century. A shift from stunted to tree growth form has occurred since the mid‐19th century. No sample associated with white spruce remains gave a date older than 300 14C years bp [calibrated age (cal.) ad 1430–1690]. Main conclusions White spruce probably arrived recently in the coastal tundra of Hudson Bay due to a delayed post‐glacial spread. The arrival of the species probably occurred during the Little Ice Age. The established individuals survived by layering during unfavourable periods, but acted as nuclei for sexual recruitment almost continuously, except in the northernmost and most exposed sites. Warmer periods were marked by strong seedling recruitment and a shift to tree growth form. Unlike white spruce, black spruce showed no evidence of an ongoing change in growth form and sexual recruitment. Ecological requirements and recent history of tree‐line species should be taken into account in order to understand the present dynamics of high‐latitude ecosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号