首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cigarette smoke-induced airway epithelial cell mitophagy is an important mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mitochondrial protein Nix (also known as BNIP3L) is a selective autophagy receptor and participates in several human diseases. However, little is known about the role of Nix in airway epithelial cell injury during the development of COPD. The aim of the present study is to investigate the effects of Nix on mitophagy and mitochondrial function in airway epithelial cells exposed to cigarette smoke extract (CSE). Our present study has found that CSE could increase Nix protein expression and induce mitophagy in airway epithelial cells. And Nix siRNA significantly inhibited mitophagy and attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. In contrast, Nix overexpression enhanced mitophagy and aggravated mitochondrial dysfunction and cell injury when airway epithelial cells were incubated with 7.5% CSE. These data suggest that Nix-dependent mitophagy promotes airway epithelial cell and mitochondria injury induced by cigarette smoke, and may be involved in the pathogenesis of COPD and other cigarette smoke-associated diseases.  相似文献   

2.
Sepsis is the most common cause of death in intensive care units. This study investigated the circular RNA (circRNA) and mRNA expression profiles and functional networks of the aortic tissue in sepsis. We established a lipopolysaccharide (LPS)‐induced rat sepsis model. High‐throughput sequencing was performed on the aorta tissue to identify differentially expressed (DE) circRNAs and mRNAs, which were validated by real‐time quantitative polymerase chain reaction (RT‐qPCR). Bioinformatic analysis was carried out and coding and non‐coding co‐expression (CNC) and competing endogenous RNA (ceRNA) regulatory networks were constructed to investigate the mechanisms. In total, 373 up‐regulated and 428 down‐regulated circRNAs and 2063 up‐regulated and 2903 down‐regulated mRNAs were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of mRNAs showed that the down‐regulated genes were mainly enriched in the process of energy generation. CNC and ceRNA regulatory networks were constructed with seven DE circRNAs. The results of functional enrichment analysis of CNC target genes revealed the important role of circRNAs in inflammatory response. The ceRNA network also highlighted the significant enrichment in calcium signalling pathway. Significant alterations in circRNAs and mRNAs were observed in the aortic tissue of septic rats. In addition, CNC and ceRNA networks were established.  相似文献   

3.
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and abnormal inflammatory response. Wnt/β‐catenin and AMP‐activated protein kinase (AMPK) have been shown to modulate lung inflammatory responses and injury. However, it remains elusive whether Wnt/β‐catenin and AMPK modulate nuclear factor erythroid‐2 related factor‐2 (Nrf2)‐mediated protective responses during the development of emphysema. Here we showed that treatment with a Wnt pathway activator (LiCl) reduced elastase‐induced airspace enlargement and cigarette smoke extract (CSE)‐induced lung inflammatory responses in WT mice, which was associated with increased activation of Nrf2 pathway. Interestingly, these effects of LiCl were not observed in Nrf2?/? mice exposed to elastase. In normal human bronchial epithelial (NHBE) cells, Wnt3a overexpression up‐regulated, whereas Wnt3a knockdown further down‐regulated the levels of Nrf2 and its target proteins heme oxygenase‐1 (HO‐1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) by CSE treatment. In contrast, Nrf2 deficiency did not have any effects on Wnt/β‐catenin pathway in mouse lungs and NHBE cells. Both elastase and CSE exposures reduced AMPK phosphorylation. A specific AMPK activator metformin increased Wnt3a, β‐catenin, Nrf2 phosphorylation and activation but reduced the levels of IL‐6 and IL‐8 in NHBE cells and mouse lungs exposed to CSE. Furthermore, Nrf2 deficiency abolished the protection of metformin against CSE‐induced increase in IL‐6 and IL‐8 in NHBE cells. In conclusion, Nrf2 mediates the protective effects of both Wnt3a/β‐catenin and AMPK on lung inflammatory responses during the development of COPD/emphysema. These findings provide potential therapeutic targets for the intervention of COPD/emphysema.  相似文献   

4.
5.
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5–120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.  相似文献   

6.
Cigarette smoke extract induces endothelial cell injury via JNK pathway   总被引:5,自引:0,他引:5  
Cigarette smoking is the most crucial factor responsible for chronic obstructive pulmonary disease (COPD). The precise mechanisms of the development of the disease have, however, not been fully understood. Recently, impairment of pulmonary endothelial cells has been increasingly recognized as a critical pathophysiological process in COPD. To verify this hypothesis, we examined how cigarette smoke extract (CSE) damages human umbilical vein endothelial cells (HUVECs). CSE activated c-Jun N-terminal kinase (JNK), and treatment of HUVECs with SP600125, a specific inhibitor of the JNK pathway, significantly suppressed endothelial cell damage by CSE. In contrast, inhibition of the extracellular-regulated kinase or the p38 pathway did not affect the cytotoxicity of CSE. Furthermore, anti-oxidants superoxide dismutase and catalase reduced CSE-induced JNK phosphorylation and endothelial cell injury. These results indicate that CSE damages vascular endothelial cells through the JNK pathway activated, at least partially, by oxidative stress.  相似文献   

7.
Circular RNAs (circRNAs) make up a large class of non‐coding RNAs and play important roles in the pathology of a variety of diseases. However, their roles in pulmonary macrophage polarization after sepsisinduced lung injury is unknown. In this study, mice were divided into two groups: Sham control group and cecal ligation and puncture (CLP)‐induced ALI group. Macrophages were isolated from lung homogenates 24 hours after SCLP/CLP. We started with RNA‐seq of circRNA changes in macrophages and validated by RT‐PCR in the following experiments. A total of 4318 circRNAs were detected in the two groups. Of these, 11 and 126 circRNAs were found to be significantly upregulated and downregulated, respectively, compared to the control (p≤0.05, Fold Change ≥2). Differentially expressed circRNAs with a high foldchange (fold‐change >4, P<0.05) were selected for validation by qRT‐PCR, 10 of which were verified. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. The network of circRNA‐miRNA‐mRNA was illustrated by cytoscape software. Gene ontology analyses indicated the upregulated circRNAs were involved in the multiple biological functions such as regulation of mitochondrion distribution and Notch binding, while the down‐regulated circRNAs mainly involved in the biological process as histone H3K27 methylation. KEGG pathway analysis revealed TGF‐beta signaling pathway was related to the upregulated circRNAs. The present study provides a novel insight into the roles of circRNAs in pulmonary macrophage differentiation and polarization post septic lung injury.  相似文献   

8.

Background

Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.

Methods

The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.

Results

In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.

Conclusions

These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.  相似文献   

9.
Cigarette smoke is the principal risk factor for development of chronic obstructive pulmonary disease (COPD). Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) superfamily of transporters, which transport physiologic and toxic substrates across cell membranes. MRP1 is highly expressed in lung epithelium. This study aims to analyze the effect of cigarette smoke extract (CSE) on MRP1 activity. In the human bronchial epithelial cell line 16HBE14o-, MRP1 function was studied flow cytometrically by cellular retention of carboxyfluorescein (CF) after CSE incubation and MRP1 downregulation by RNA interference (siRNA). Cell survival was measured by the MTT assay. Immunocytochemically, it was shown that 16HBE14o(-) expressed MRP1 and breast cancer resistance protein. Coincubation of CSE IC50 (1.53% +/- 0.22%) with MK571 further decreased cell survival 31% (p, = 0.018). CSE increased cellular CF retention dose dependently from 1.7-fold at 5% CSE to 10.3-fold at 40% CSE (both p < 0.05). siRNA reduced MRP1 RNA expression with 49% and increased CF accumulation 67% versus control transfected cells. CSE exposure further increased CF retention 24% (p = 0.031). A linear positive relation between MRP1 function and CSE-modulating effects (r = 0.99, p =0.089) was shown in untransfected, control transfected, and MRP1 downregulated 16HBE14o- cells analogous to blocking effects with MRP1 inhibitor MK571 (r = 0.99, p = 0.034). In conclusion, cigarette smoke extract affects MRP1 activity probably competitively in bronchial epithelial cells. Inhibition of MRP1 in turn results in higher CSE toxicity. We propose that MRP1 may be a protective protein for COPD development.  相似文献   

10.
Covalently closed circular RNA molecules (circRNAs) have recently emerged as a class of RNA isoforms with widespread and tissue specific expression across animals, oftentimes independent of the corresponding linear mRNAs. circRNAs are remarkably stable and sometimes highly expressed molecules. Here, we sequenced RNA in human peripheral whole blood to determine the potential of circRNAs as biomarkers in an easily accessible body fluid. We report the reproducible detection of thousands of circRNAs. Importantly, we observed that hundreds of circRNAs are much higher expressed than corresponding linear mRNAs. Thus, circRNA expression in human blood reveals and quantifies the activity of hundreds of coding genes not accessible by classical mRNA specific assays. Our findings suggest that circRNAs could be used as biomarker molecules in standard clinical blood samples.  相似文献   

11.
We have previously reported that cigarette smoke can induce DNA damage in human lung cells without leading to apoptosis or necrosis. In this study, we report that STAT3 is required for the survival of human bronchial epithelial cells (HBECs) following cigarette smoke-induced DNA damage. Cigarette smoke extract (CSE) exposure increases STAT3 phosphorylation (Tyr 705) and DNA binding activity in HBECs. CSE also stimulates IL-6 release and mRNA expression. Anti-IL-6 neutralizing antibody partially blocks STAT3 activation and renders the cells sensitive to CSE-induced DNA damage. Suppression of STAT3 by siRNA results in severe DNA damage and cell death in response to CSE exposure. These findings suggest that STAT3 mediates HBEC survival in response to CSE-induced DNA damage, at least in part, through the IL-6/STAT3 signaling pathway.  相似文献   

12.
13.
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is primarily caused by cigarette smoke (CS)‐induced chronic inflammation. In this study, we investigated the function and mechanism of action of the long non‐coding RNA (lncRNA) taurine‐up‐regulated gene 1 (TUG1) in CS‐induced COPD. We found that the expression of TUG1 was significantly higher in the sputum cells and lung tissues of patients with COPD as compared to that in non‐smokers, and negatively correlated with the percentage of predicted forced expiratory volume in 1 second. In addition, up‐regulation of TUG1 was observed in CS‐exposed mice, and knockdown of TUG1 attenuated inflammation and airway remodelling in a mouse model. Moreover, TUG1 expression was higher in CS extract (CSE)‐treated human bronchial epithelial cells and lung fibroblasts, whereas inhibition of TUG1 reversed CSE‐induced inflammation and collagen deposition in vitro. Mechanistically, TUG1 promoted the expression of dual‐specificity phosphatase 6 (DUSP6) by sponging miR‐145‐5p. DUSP6 overexpression reversed TUG1 knockdown‐mediated inhibition of inflammation and airway remodelling. These findings suggested an important role of TUG1 in the pathological alterations associated with CS‐mediated airway remodelling in COPD. Thus, TUG1 may be a promising therapeutic target in CS‐induced airway inflammation and fibroblast activation.  相似文献   

14.
15.
Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.  相似文献   

16.
Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.  相似文献   

17.

Background

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.

Methodology and Principal Findings

Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1 −/− mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.

Conclusions

We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.  相似文献   

18.
Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and predisposes subjects to severe respiratory tract infections. Epidemiological studies have shown that cigarette smokers are seven times more likely to contract influenza infection than nonsmokers. The mechanisms underlying this increased susceptibility are poorly characterized. Retinoic acid-inducible gene (RIG)-I is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focused on how cigarette smoke extract (CSE) alters the influenza-induced proinflammatory response and suppresses host antiviral activity in the human lung using a unique lung organ culture model. We first determined that treatment with 2-20% CSE did not induce cytotoxicity as assessed by LDH release. However, CSE treatment inhibited influenza-induced IFN-inducible protein 10 protein and mRNA expression. Induction of the major antiviral cytokine IFN-β mRNA was also decreased by CSE. CSE also blunted viral-mediated RIG-I mRNA and protein expression. Inhibition of viral-mediated RIG-I induction by CSE was prevented by the antioxidants N-acetyl-cysteine and glutathione. These findings show that CSE suppresses antiviral and innate immune responses in influenza virus-infected human lungs through oxidative inhibition of viral-mediated induction of the pattern recognition receptor RIG-I. This immunosuppressive effect of CSE may play a role in the enhanced susceptibility of smokers to serious influenza infection in the lung.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号